Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Acoust Soc Am ; 155(4): 2359-2370, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38563623

RESUMO

Passive acoustic monitoring has been an effective tool to study cetaceans in remote regions of the Arctic. Here, we advance methods to acoustically identify the only two Arctic toothed whales, the beluga (Delphinapterus leucas) and narwhal (Monodon monoceros), using echolocation clicks. Long-term acoustic recordings collected from moorings in Northwest Greenland were analyzed. Beluga and narwhal echolocation signals were distinguishable using spectrograms where beluga clicks had most energy >30 kHz and narwhal clicks had a sharp lower frequency limit near 20 kHz. Changes in one-third octave levels (TOL) between two pairs of one-third octave bands were compared from over one million click spectra. Narwhal clicks had a steep increase between the 16 and 25 kHz TOL bands that was absent in beluga click spectra. Conversely, beluga clicks had a steep increase between the 25 and 40 kHz TOL bands that was absent in narwhal click spectra. Random Forest classification models built using the 16 to 25 kHz and 25 to 40 kHz TOL ratios accurately predicted the species identity of 100% of acoustic events. Our findings support the use of echolocation TOL ratios in future automated click classifiers for acoustic monitoring of Arctic toothed whales and potentially for other odontocete species.


Assuntos
Ecolocação , Animais , Acústica , Baleias
2.
J Acoust Soc Am ; 151(2): 1380, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232073

RESUMO

Climate-driven changes are affecting sea ice conditions off Tasiilaq, Southeast Greenland, with implications for marine mammal distributions. Knowledge about marine mammal presence, biodiversity, and community composition is key to effective conservation and management but is lacking, especially during winter months. Seasonal patterns of acoustic marine mammal presence were investigated relative to sea ice concentration at two recording sites between 2014 and 2018, with one (65.6°N, 37.4°W) or three years (65.5°N, 38.0°W) of passive acoustic recordings. Seven marine mammal species were recorded. Bearded seals were acoustically dominant during winter and spring, whereas sperm, humpback, and fin whales dominated during the sea ice-free summer and autumn. Narwhals, bowhead, and killer whales were recorded only rarely. Song-fragments of humpback whales and acoustic presence of fin whales in winter suggest mating-associated behavior taking place in the area. Ambient noise levels in 1/3-octave level bands (20, 63, 125, 500, 1000, and 4000 Hz), ranged between 75.6 to 105 dB re 1 µPa. This study provides multi-year insights into the coastal marine mammal community composition off Southeast Greenland and suggests that the Tasiilaq area provides suitable habitat for various marine mammal species year-round.


Assuntos
Baleia Franca , Baleia Comum , Orca , Acústica , Animais , Groenlândia , Mamíferos
3.
Proc Natl Acad Sci U S A ; 115(29): 7617-7622, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967138

RESUMO

The fabled Northwest Passage and Northern Sea Route that were once the quests of early Western explorers are now increasingly sea ice-free, with routine vessel transits expected by midcentury. The potential impacts of this novel vessel traffic on endemic Arctic marine mammal (AMM) species are unknown despite their critical social and ecological roles in the ecosystem and widely recognized susceptibility to ice loss. We developed a vulnerability assessment of 80 subpopulations of seven AMM species to vessel traffic during the ice-free season. Vulnerability scores were based on the combined influence of spatially explicit exposure to the sea routes and a suite of sensitivity variables. More than half of AMM subpopulations (42/80) are exposed to open-water vessel transits in the Arctic sea routes. Narwhals (Monodon monoceros) were estimated to be most vulnerable to vessel impacts, given their high exposure and sensitivity, and polar bears (Ursus maritimus) were estimated to be the least vulnerable because of their low exposure and sensitivity. Regions with geographic bottlenecks, such as the Bering Strait and eastern Canadian Arctic, were characterized by two to three times higher vulnerability than more remote regions. These pinch points are obligatory pathways for both vessels and migratory AMMs, and so represent potentially high conflict areas but also opportunities for conservation-informed planning. Some of the species and regions identified as least vulnerable were also characterized by high uncertainty, highlighting additional data and monitoring needs. Our quantification of the heterogeneity of risk across AMM species provides a necessary first step toward developing best practices for maritime industries poised to advance into this rapidly changing seascape.


Assuntos
Migração Animal , Mudança Climática , Navios , Ursidae/fisiologia , Baleias/fisiologia , Animais , Regiões Árticas
4.
Glob Chang Biol ; 26(11): 6251-6265, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32964662

RESUMO

Kane Basin (KB) is one of the world's most northerly polar bear (Ursus maritimus) subpopulations, where bears have historically inhabited a mix of thick multiyear and annual sea ice year-round. Currently, KB is transitioning to a seasonally ice-free region because of climate change. This ecological shift has been hypothesized to benefit polar bears in the near-term due to thinner ice with increased biological production, although this has not been demonstrated empirically. We assess sea-ice changes in KB together with changes in polar bear movements, seasonal ranges, body condition, and reproductive metrics obtained from capture-recapture (physical and genetic) and satellite telemetry studies during two study periods (1993-1997 and 2012-2016). The annual cycle of sea-ice habitat in KB shifted from a year-round ice platform (~50% coverage in summer) in the 1990s to nearly complete melt-out in summer (<5% coverage) in the 2010s. The mean duration between sea-ice retreat and advance increased from 109 to 160 days (p = .004). Between the 1990s and 2010s, adult female (AF) seasonal ranges more than doubled in spring and summer and were significantly larger in all months. Body condition scores improved for all ages and both sexes. Mean litter sizes of cubs-of-the-year (C0s) and yearlings (C1s), and the number of C1s per AF, did not change between decades. The date of spring sea-ice retreat in the previous year was positively correlated with C1 litter size, suggesting smaller litters following years with earlier sea-ice breakup. Our study provides evidence for range expansion, improved body condition, and stable reproductive performance in the KB polar bear subpopulation. These changes, together with a likely increasing subpopulation abundance, may reflect the shift from thick, multiyear ice to thinner, seasonal ice with higher biological productivity. The duration of these benefits is unknown because, under unmitigated climate change, continued sea-ice loss is expected to eventually have negative demographic and ecological effects on all polar bears.


Assuntos
Ursidae , Animais , Regiões Árticas , Mudança Climática , Ecossistema , Feminino , Camada de Gelo , Masculino
5.
Ecol Appl ; 30(4): e02071, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925853

RESUMO

Climate change has broad ecological implications for species that rely on sensitive habitats. For some top predators, loss of habitat is expected to lead to cascading behavioral, nutritional, and reproductive changes that ultimately accelerate population declines. In the case of the polar bear (Ursus maritimus), declining Arctic sea ice reduces access to prey and lengthens seasonal fasting periods. We used a novel combination of physical capture, biopsy darting, and visual aerial observation data to project reproductive performance for polar bears by linking sea ice loss to changes in habitat use, body condition (i.e., fatness), and cub production. Satellite telemetry data from 43 (1991-1997) and 38 (2009-2015) adult female polar bears in the Baffin Bay subpopulation showed that bears now spend an additional 30 d on land (90 d in total) in the 2000s compared to the 1990s, a change closely correlated with changes in spring sea ice breakup and fall sea ice formation. Body condition declined for all sex, age, and reproductive classes and was positively correlated with sea ice availability in the current and previous year. Furthermore, cub litter size was positively correlated with maternal condition and spring breakup date (i.e., later breakup leading to larger litters), and negatively correlated with the duration of the ice-free period (i.e., longer ice-free periods leading to smaller litters). Based on these relationships, we projected reproductive performance three polar bear generations into the future (approximately 35 yr). Results indicate that two-cub litters, previously the norm, could largely disappear from Baffin Bay as sea ice loss continues. Our findings demonstrate how concurrent analysis of multiple data types collected over long periods from polar bears can provide a mechanistic understanding of the ecological implications of climate change. This information is needed for long-term conservation planning, which includes quantitative harvest risk assessments that incorporate estimated or assumed trends in future environmental carrying capacity.


Assuntos
Mudança Climática , Ursidae , Animais , Regiões Árticas , Ecossistema , Feminino , Camada de Gelo , Gravidez
6.
Glob Chang Biol ; 23(6): 2206-2217, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28001336

RESUMO

Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze-up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between 'early' (1993-2002) and 'late' (2004-2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze-up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze-up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr-1 ) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how belugas may fare in the future.


Assuntos
Migração Animal , Beluga , Mudança Climática , Camada de Gelo , Alaska , Animais , Regiões Árticas , Oceanos e Mares , Federação Russa , Baleias
7.
Biol Lett ; 12(12)2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27928000

RESUMO

Loss of Arctic sea ice owing to climate change is the primary threat to polar bears throughout their range. We evaluated the potential response of polar bears to sea-ice declines by (i) calculating generation length (GL) for the species, which determines the timeframe for conservation assessments; (ii) developing a standardized sea-ice metric representing important habitat; and (iii) using statistical models and computer simulation to project changes in the global population under three approaches relating polar bear abundance to sea ice. Mean GL was 11.5 years. Ice-covered days declined in all subpopulation areas during 1979-2014 (median -1.26 days year-1). The estimated probabilities that reductions in the mean global population size of polar bears will be greater than 30%, 50% and 80% over three generations (35-41 years) were 0.71 (range 0.20-0.95), 0.07 (range 0-0.35) and less than 0.01 (range 0-0.02), respectively. According to IUCN Red List reduction thresholds, which provide a common measure of extinction risk across taxa, these results are consistent with listing the species as vulnerable. Our findings support the potential for large declines in polar bear numbers owing to sea-ice loss, and highlight near-term uncertainty in statistical projections as well as the sensitivity of projections to different plausible assumptions.


Assuntos
Conservação dos Recursos Naturais/tendências , Camada de Gelo , Ursidae , Animais , Regiões Árticas , Mudança Climática , Simulação por Computador , Ecossistema , Previsões , Densidade Demográfica , Dinâmica Populacional/tendências
8.
Biol Lett ; 12(10)2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27784729

RESUMO

Glacial fronts are important summer habitat for narwhals (Monodon monoceros); however, no studies have quantified which glacial properties attract whales. We investigated the importance of glacial habitats using telemetry data from n = 15 whales tagged in September of 1993, 1994, 2006 and 2007 in Melville Bay, West Greenland. For 41 marine-terminating glaciers, we estimated (i) narwhal presence/absence, (ii) number of 24 h periods spent at glaciers and (iii) the fraction of narwhals that visited each glacier (at 5, 7 and 10 km) in autumn. We also compiled data on glacier width, ice thickness, ice velocity, front advance/retreat, area and extent of iceberg discharge, bathymetry, subglacial freshwater run-off and sediment flux. Narwhal use of glacial habitats expanded in the 2000s probably due to reduced summer fast ice and later autumn freeze-up. Using a generalized multivariate framework, glacier ice front thickness (vertical height in the water column) was a significant covariate in all models. A negative relationship with glacier velocity was included in several models and glacier front width was a significant predictor in the 2000s. Results suggest narwhals prefer glaciers with potential for higher ambient freshwater melt over glaciers with silt-laden discharge. This may represent a preference for summer freshwater habitat, similar to other Arctic monodontids.


Assuntos
Camada de Gelo , Baleias/fisiologia , Animais , Comportamento Animal , Ecossistema , Água Doce , Groenlândia , Tecnologia de Sensoriamento Remoto , Estações do Ano , Baleias/psicologia
9.
Conserv Biol ; 29(3): 724-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25783745

RESUMO

Arctic marine mammals (AMMs) are icons of climate change, largely because of their close association with sea ice. However, neither a circumpolar assessment of AMM status nor a standardized metric of sea ice habitat change is available. We summarized available data on abundance and trend for each AMM species and recognized subpopulation. We also examined species diversity, the extent of human use, and temporal trends in sea ice habitat for 12 regions of the Arctic by calculating the dates of spring sea ice retreat and fall sea ice advance from satellite data (1979-2013). Estimates of AMM abundance varied greatly in quality, and few studies were long enough for trend analysis. Of the AMM subpopulations, 78% (61 of 78) are legally harvested for subsistence purposes. Changes in sea ice phenology have been profound. In all regions except the Bering Sea, the duration of the summer (i.e., reduced ice) period increased by 5-10 weeks and by >20 weeks in the Barents Sea between 1979 and 2013. In light of generally poor data, the importance of human use, and forecasted environmental changes in the 21st century, we recommend the following for effective AMM conservation: maintain and improve comanagement by local, federal, and international partners; recognize spatial and temporal variability in AMM subpopulation response to climate change; implement monitoring programs with clear goals; mitigate cumulative impacts of increased human activity; and recognize the limits of current protected species legislation.


Assuntos
Caniformia/fisiologia , Cetáceos/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Animais , Regiões Árticas , Ecossistema , Camada de Gelo , Densidade Demográfica
10.
Proc Biol Sci ; 280(1752): 20122371, 2013 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23222446

RESUMO

Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male-male and male-female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male-male encounter, while having little impact on male-female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.


Assuntos
Ecossistema , Atividade Motora , Reprodução , Ursidae/fisiologia , Animais , Feminino , Groenlândia , Camada de Gelo , Masculino , Nunavut , Tecnologia de Sensoriamento Remoto , Estações do Ano , Caracteres Sexuais
11.
Mar Pollut Bull ; 187: 114557, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36640494

RESUMO

The narrow Bering Strait provides the only gateway between the Pacific Ocean and the Arctic, bringing migrating marine mammals in close proximity to ships transiting the strait. We characterized ship activity in the Bering Strait during the open-water season (July-November) for 2013-2015 and quantified the impact of ship noise on third-octave sound levels (TOLs) for bands used by baleen whales (25-1000 Hz). Peak ship activity occurred in July-September with the greatest overlap in ship noise and whale vocalizations observed in October. Ships elevated sound levels by ∼4 dB on average for all TOL bands combined, and 250-Hz TOLs exceeding 100 dB re 1 µPa were recorded from two large vessels over 11 km away from the hydrophones. Our results show that ship noise has the potential to impact baleen whales in the Bering Strait and serve as a baseline for measuring future changes in ship activity in the region.


Assuntos
Ruído , Navios , Animais , Som , Acústica , Baleias
12.
Biol Lett ; 8(2): 270-3, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-21937490

RESUMO

The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations.


Assuntos
Migração Animal , Baleia Franca/fisiologia , Animais , Regiões Árticas , Canadá , Aquecimento Global , Masculino , Oceanos e Mares , Tecnologia de Sensoriamento Remoto , Estações do Ano
13.
Polar Biol ; 45(1): 89-100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35125636

RESUMO

There is an imminent need to collect information on distribution and abundance of polar bears (Ursus maritimus) to understand how they are affected by the ongoing decrease in Arctic sea ice. The Kane Basin (KB) subpopulation is a group of high-latitude polar bears that ranges between High Arctic Canada and NW Greenland around and north of the North Water polynya (NOW). We conducted a line transect distance sampling aerial survey of KB polar bears during 28 April-12 May 2014. A total of 4160 linear kilometers were flown in a helicopter over fast ice in the fjords and over offshore pack ice between 76° 50' and 80° N'. Using a mark-recapture distance sampling protocol, the estimated abundance was 190 bears (95% lognormal CI: 87-411; CV 39%). This estimate is likely negatively biased to an unknown degree because the offshore sectors of the NOW with much open water were not surveyed because of logistical and safety reasons. Our study demonstrated that aerial surveys may be a feasible method for obtaining abundance estimates for small subpopulations of polar bears.

14.
Sci Rep ; 12(1): 522, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017585

RESUMO

Gut microbiomes were analyzed by 16S rRNA gene metabarcoding for polar bears (Ursus maritimus) from the southern Beaufort Sea (SB), where sea ice loss has led to increased use of land-based food resources by bears, and from East Greenland (EG), where persistent sea ice has allowed hunting of ice-associated prey nearly year-round. SB polar bears showed a higher number of total (940 vs. 742) and unique (387 vs. 189) amplicon sequence variants and higher inter-individual variation compared to EG polar bears. Gut microbiome composition differed significantly between the two subpopulations and among sex/age classes, likely driven by diet variation and ontogenetic shifts in the gut microbiome. Dietary tracer analysis using fatty acid signatures for SB polar bears showed that diet explained more intrapopulation variation in gut microbiome composition and diversity than other tested variables, i.e., sex/age class, body condition, and capture year. Substantial differences in the SB gut microbiome relative to EG polar bears, and associations between SB gut microbiome and diet, suggest that the shifting foraging habits of SB polar bears tied to sea ice loss may be altering their gut microbiome, with potential consequences for nutrition and physiology.


Assuntos
Microbioma Gastrointestinal , Gelo , Ursidae , Animais , Dieta/veterinária , Ácidos Graxos/análise , RNA Ribossômico 16S/genética , Ursidae/microbiologia
15.
Science ; 376(6599): 1333-1338, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709290

RESUMO

Polar bears are susceptible to climate warming because of their dependence on sea ice, which is declining rapidly. We present the first evidence for a genetically distinct and functionally isolated group of polar bears in Southeast Greenland. These bears occupy sea-ice conditions resembling those projected for the High Arctic in the late 21st century, with an annual ice-free period that is >100 days longer than the estimated fasting threshold for the species. Whereas polar bears in most of the Arctic depend on annual sea ice to catch seals, Southeast Greenland bears have a year-round hunting platform in the form of freshwater glacial mélange. This suggests that marine-terminating glaciers, although of limited availability, may serve as previously unrecognized climate refugia. Conservation of Southeast Greenland polar bears, which meet criteria for recognition as the world's 20th polar bear subpopulation, is necessary to preserve the genetic diversity and evolutionary potential of the species.


Assuntos
Conservação dos Recursos Naturais , Aquecimento Global , Camada de Gelo , Ursidae , Animais , Regiões Árticas , Extinção Biológica , Groenlândia , Dinâmica Populacional , Focas Verdadeiras
16.
Nat Ecol Evol ; 6(7): 936-944, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35711062

RESUMO

Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are sister species possessing distinct physiological and behavioural adaptations that evolved over the last 500,000 years. However, comparative and population genomics analyses have revealed that several extant and extinct brown bear populations have relatively recent polar bear ancestry, probably as the result of geographically localized instances of gene flow from polar bears into brown bears. Here, we generate and analyse an approximate 20X paleogenome from an approximately 100,000-year-old polar bear that reveals a massive prehistoric admixture event, which is evident in the genomes of all living brown bears. This ancient admixture event was not visible from genomic data derived from living polar bears. Like more recent events, this massive admixture event mainly involved unidirectional gene flow from polar bears into brown bears and occurred as climate changes caused overlap in the ranges of the two species. These findings highlight the complex reticulate paths that evolution can take within a regime of radically shifting climate.


Assuntos
Fluxo Gênico , Ursidae , Animais , Mudança Climática , Genoma , Genômica , Ursidae/genética
17.
PLoS One ; 16(9): e0257054, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34499678

RESUMO

Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.e. on-axis clicks) were isolated to calculate sonar parameters. We report the first sonar beam estimate of in situ recordings of wild belugas with an average -3 dB asymmetrical vertical beam width of 5.4°, showing a wider ventral beam. This narrow beam width is consistent with estimates from captive belugas; however, our results indicate that beluga sonar beams may not be symmetrical and may differ in wild and captive contexts. The mean apparent source level for on-axis clicks was 212 dB pp re 1 µPa and whales were shown to vertically scan the array from 120 meters distance. Our findings support the hypothesis that highly directional sonar beams and high source levels are an evolutionary adaptation for Arctic odontocetes to reduce unwanted surface echoes from sea ice (i.e., acoustic clutter) and effectively navigate through leads in the pack ice (e.g., find breathing holes). These results provide the first baseline beluga sonar metrics from free-ranging animals using a hydrophone array and are important for acoustic programs throughout the Arctic, particularly for acoustic classification between belugas and narwhals (Monodon monoceros).


Assuntos
Beluga/fisiologia , Som , Animais , Ecolocação , Geografia , Groenlândia
18.
Sci Rep ; 11(1): 22141, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772963

RESUMO

Belugas (Delphinapterus leucas) and narwhals (Monodon monoceros) are highly social Arctic toothed whales with large vocal repertoires and similar acoustic profiles. Passive Acoustic Monitoring (PAM) that uses multiple hydrophones over large spatiotemporal scales has been a primary method to study their populations, particularly in response to rapid climate change and increasing underwater noise. This study marks the first acoustic comparison between wild belugas and narwhals from the same location and reveals that they can be acoustically differentiated and classified solely by echolocation clicks. Acoustic recordings were made in the pack ice of Baffin Bay, West Greenland, during 2013. Multivariate analyses and Random Forests classification models were applied to eighty-one single-species acoustic events comprised of numerous echolocation clicks. Results demonstrate a significant difference between species' acoustic parameters where beluga echolocation was distinguished by higher frequency content, evidenced by higher peak frequencies, center frequencies, and frequency minimums and maximums. Spectral peaks, troughs, and center frequencies for beluga clicks were generally > 60 kHz and narwhal clicks < 60 kHz with overlap between 40-60 kHz. Classification model predictive performance was strong with an overall correct classification rate of 97.5% for the best model. The most important predictors for species assignment were defined by peaks and notches in frequency spectra. Our results provide strong support for the use of echolocation in PAM efforts to differentiate belugas and narwhals acoustically.


Assuntos
Beluga/fisiologia , Ecolocação/fisiologia , Vocalização Animal/fisiologia , Baleias/fisiologia , Acústica , Animais , Groenlândia , Especificidade da Espécie
19.
Sci Rep ; 11(1): 23360, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862381

RESUMO

A longer Arctic open water season is expected to increase underwater noise levels due to anthropogenic activities such as shipping, seismic surveys, sonar, and construction. Many Arctic marine mammal species depend on sound for communication, navigation, and foraging, therefore quantifying underwater noise levels is critical for documenting change and providing input to management and legislation. Here we present long-term underwater sound recordings from 26 deployments around Greenland from 2011 to 2020. Ambient noise was analysed in third octave and decade bands and further investigated using generic detectors searching for tonal and transient sounds. Ambient noise levels partly overlap with previous Arctic observations, however we report much lower noise levels than previously documented, specifically for Melville Bay and the Greenland Sea. Consistent seasonal noise patterns occur in Melville Bay, Baffin Bay and Greenland Sea, with noise levels peaking in late summer and autumn correlating with open water periods and seismic surveys. These three regions also had similar tonal detection patterns that peaked in May/June, likely due to bearded seal vocalisations. Biological activity was more readily identified using detectors rather than band levels. We encourage additional research to quantify proportional noise contributions from geophysical, biological, and anthropogenic sources in Arctic waters.

20.
Ecol Lett ; 12(5): 395-408, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19379134

RESUMO

A goal of animal movement analysis is to reveal behavioural mechanisms by which organisms utilize complex and variable environments. Statistical analysis of movement data is complicated by the fact that the data are multidimensional, autocorrelated and often marked by error and irregular measurement intervals or gappiness. Furthermore, movement data reflect behaviours that are themselves heterogeneous. Here, we model movement data as a subsampling of a continuous stochastic processes, and introduce the behavioural change point analysis (BCPA), a likelihood-based method that allows for the identification of significant structural changes. The BCPA is robust to gappiness and measurement error, computationally efficient, easy to implement and reveals structure that is otherwise difficult to discern. We apply the analysis to a GPS movement track of a northern fur seal (Callorhinus ursinus), revealing an unexpectedly complex diurnal behavioural profile, and demonstrate its robustness to the greater errors associated with the ARGOS tracking system. By informing empirical interpretation of movement data, we suggest that the BCPA can eventually motivate the development of mechanistic behavioural models.


Assuntos
Comportamento Animal/fisiologia , Interpretação Estatística de Dados , Otárias/fisiologia , Modelos Biológicos , Movimento/fisiologia , Animais , Simulação por Computador , Sistemas de Informação Geográfica , Funções Verossimilhança , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA