Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 23(9): 1292-1299, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38413810

RESUMO

Pills are a cornerstone of medicine but can be challenging to swallow. While liquid formulations are easier to ingest, they lack the capacity to localize therapeutics with excipients nor act as controlled release devices. Here we describe drug formulations based on liquid in situ-forming tough (LIFT) hydrogels that bridge the advantages of solid and liquid dosage forms. LIFT hydrogels form directly in the stomach through sequential ingestion of a crosslinker solution of calcium and dithiol crosslinkers, followed by a drug-containing polymer solution of alginate and four-arm poly(ethylene glycol)-maleimide. We show that LIFT hydrogels robustly form in the stomachs of live rats and pigs, and are mechanically tough, biocompatible and safely cleared after 24 h. LIFT hydrogels deliver a total drug dose comparable to unencapsulated drug in a controlled manner, and protect encapsulated therapeutic enzymes and bacteria from gastric acid-mediated deactivation. Overall, LIFT hydrogels may expand access to advanced therapeutics for patients with difficulty swallowing.


Assuntos
Hidrogéis , Hidrogéis/química , Animais , Ratos , Suínos , Polietilenoglicóis/química , Alginatos/química
2.
Med ; 5(7): 780-796.e10, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38663403

RESUMO

BACKGROUND: Dosing of chemotherapies is often calculated according to the weight and/or height of the patient or equations derived from these, such as body surface area (BSA). Such calculations fail to capture intra- and interindividual pharmacokinetic variation, which can lead to order of magnitude variations in systemic chemotherapy levels and thus under- or overdosing of patients. METHODS: We designed and developed a closed-loop drug delivery system that can dynamically adjust its infusion rate to the patient to reach and maintain the drug's target concentration, regardless of a patient's pharmacokinetics (PK). FINDINGS: We demonstrate that closed-loop automated drug infusion regulator (CLAUDIA) can control the concentration of 5-fluorouracil (5-FU) in rabbits according to a range of concentration-time profiles (which could be useful in chronomodulated chemotherapy) and over a range of PK conditions that mimic the PK variability observed clinically. In one set of experiments, BSA-based dosing resulted in a concentration 7 times above the target range, while CLAUDIA keeps the concentration of 5-FU in or near the targeted range. Further, we demonstrate that CLAUDIA is cost effective compared to BSA-based dosing. CONCLUSIONS: We anticipate that CLAUDIA could be rapidly translated to the clinic to enable physicians to control the plasma concentration of chemotherapy in their patients. FUNDING: This work was supported by MIT's Karl van Tassel (1925) Career Development Professorship and Department of Mechanical Engineering and the Bridge Project, a partnership between the Koch Institute for Integrative Cancer Research at MIT and the Dana-Farber/Harvard Cancer Center.


Assuntos
Sistemas de Liberação de Medicamentos , Fluoruracila , Medicina de Precisão , Fluoruracila/farmacocinética , Fluoruracila/administração & dosagem , Coelhos , Animais , Sistemas de Liberação de Medicamentos/métodos , Medicina de Precisão/métodos , Humanos , Infusões Intravenosas , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA