Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Cell ; 33(4): 1099-1111, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32430672

RESUMO

Escalated PD-L1 expression has been identified during malignant transformation in a number of cancer types and helps cancer cells escape an effective anti-tumor immune response. The mechanisms underlying escalated production of PD-L1 in many cancers, however, are still far from clear. We studied PD-L1, STAT3 and STAT5 mRNA expression using qRT-PCR in 72 BCR/ABL1 negative myeloproliferative neoplasm (MPN) patients (39 polycythemia vera and 33 essential thrombocythemia). Furthermore, phosphorylation status of STAT3 and STAT5 was studied using immunoblotting in the same patients. All MPN patients were first screened for JAK2 (V617F) mutation by tetra-primer ARMS-PCR, followed by quantification of JAK2 (V617F) mutation burden in all V617F positive MPN patients by ASO-PCR. Patients were screened for BCR/ABL1 fusion gene transcripts to rule out Ph positive status. Our findings showed that mRNA levels of PD-L1 and STAT3 were significantly higher in JAK2 (V617F) MPN patients, while as STAT5 was insignificantly upregulated. STAT3 and STAT5 phosphorylation was seen to be higher in JAK2 (V617F) MPN patients compared to the JAK2 (WT) patients. Upregulation of PD-L1, STAT3 and STAT5 was significantly associated with JAK2 (V617F) percentage in MPN patients. PD-L1, STAT3 and STAT5 expression significantly and positively correlated with JAK2 (V617F) allele burden. In addition, significant coexpression of PD-L1 with STAT3 and STAT5 was observed in MPN patients. In summary, JAK2 (V617F) mutation is accompanied by increased PD-L1 expression and this PD-L1 over expression is mediated by JAK2 (V617F) mainly through STAT3, while as STAT5 may play a minor role.


Assuntos
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Mutação , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Adulto , Alelos , Feminino , Humanos , Masculino , Fosforilação/genética , Regulação para Cima/genética
2.
Hum Cell ; 33(4): 1334, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32666435

RESUMO

In the original publication, third author name was incorrectly published as "Ab Rashid Mir". The correct name should read as "Rashid Mir".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA