Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nature ; 585(7823): 96-101, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32814898

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation1-3. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells4-6. Here we show in mice that loss of C9orf72 from myeloid cells alone is sufficient to recapitulate the age-dependent lymphoid hypertrophy and autoinflammation seen in animals with a complete knockout of C9orf72. Dendritic cells isolated from C9orf72-/- mice show marked early activation of the type I interferon response, and C9orf72-/- myeloid cells are selectively hyperresponsive to activators of the stimulator of interferon genes (STING) protein-a key regulator of the innate immune response to cytosolic DNA. Degradation of STING through the autolysosomal pathway is diminished in C9orf72-/- myeloid cells, and blocking STING suppresses hyperactive type I interferon responses in C9orf72-/- immune cells as well as splenomegaly and inflammation in C9orf72-/- mice. Moreover, mice lacking one or both copies of C9orf72 are more susceptible to experimental autoimmune encephalitis, mirroring the susceptibility to autoimmune diseases seen in people with C9-ALS/FTD. Finally, blood-derived macrophages, whole blood and brain tissue from patients with C9-ALS/FTD all show an elevated type I interferon signature compared with samples from people with sporadic ALS/FTD; this increased interferon response can be suppressed with a STING inhibitor. Collectively, our results suggest that patients with C9-ALS/FTD have an altered immunophenotype because their reduced levels of C9orf72 cannot suppress the inflammation mediated by the induction of type I interferons by STING.


Assuntos
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Inflamação/metabolismo , Inflamação/prevenção & controle , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Envelhecimento/imunologia , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/deficiência , Células Dendríticas/citologia , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Inflamação/genética , Inflamação/imunologia , Interferon Tipo I/biossíntese , Interferon Tipo I/imunologia , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Células Mieloides/imunologia , Neoplasias/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
2.
Proc Natl Acad Sci U S A ; 120(28): e2302143120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399380

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting motor neurons and characterized by microglia-mediated neurotoxic inflammation whose underlying mechanisms remain incompletely understood. In this work, we reveal that MAPK/MAK/MRK overlapping kinase (MOK), with an unknown physiological substrate, displays an immune function by controlling inflammatory and type-I interferon (IFN) responses in microglia which are detrimental to primary motor neurons. Moreover, we uncover the epigenetic reader bromodomain-containing protein 4 (Brd4) as an effector protein regulated by MOK, by promoting Ser492-phospho-Brd4 levels. We further demonstrate that MOK regulates Brd4 functions by supporting its binding to cytokine gene promoters, therefore enabling innate immune responses. Remarkably, we show that MOK levels are increased in the ALS spinal cord, particularly in microglial cells, and that administration of a chemical MOK inhibitor to ALS model mice can modulate Ser492-phospho-Brd4 levels, suppress microglial activation, and modify the disease course, indicating a pathophysiological role of MOK kinase in ALS and neuroinflammation.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas que Contêm Bromodomínio , Proteínas Quinases Ativadas por Mitógeno , Doenças Neurodegenerativas , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas que Contêm Bromodomínio/genética , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
3.
PLoS Pathog ; 18(8): e1010350, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36044516

RESUMO

Host-pathogen dynamics are constantly at play during enteroviral infection. Coxsackievirus B (CVB) is a common juvenile enterovirus that infects multiple organs and drives inflammatory diseases including acute pancreatitis and myocarditis. Much like other enteroviruses, CVB is capable of manipulating host machinery to hijack and subvert autophagy for its benefit. We have previously reported that CVB triggers the release of infectious extracellular vesicles (EVs) which originate from autophagosomes. These EVs facilitate efficient dissemination of infectious virus. Here, we report that TBK1 (Tank-binding kinase 1) suppresses release of CVB-induced EVs. TBK1 is a multimeric kinase that directly activates autophagy adaptors for efficient cargo recruitment and induces type-1 interferons during viral-mediated STING recruitment. Positioning itself at the nexus of pathogen elimination, we hypothesized that loss of TBK1 could exacerbate CVB infection due to its specific role in autophagosome trafficking. Here we report that infection with CVB during genetic TBK1 knockdown significantly increases viral load and potentiates the bulk release of viral EVs. Similarly, suppressing TBK1 with small interfering RNA (siRNA) caused a marked increase in intracellular virus and EV release, while treatment in vivo with the TBK1-inhibitor Amlexanox exacerbated viral pancreatitis and EV spread. We further demonstrated that viral EV release is mediated by the autophagy modifier proteins GABARAPL1 and GABARAPL2 which facilitate autophagic flux. We observe that CVB infection stimulates autophagy and increases the release of GABARAPL1/2-positive EVs. We conclude that TBK1 plays additional antiviral roles by inducing autophagic flux during CVB infection independent of interferon signaling, and the loss of TBK1 better allows CVB-laden autophagosomes to circumvent lysosomal degradation, increasing the release of virus-laden EVs. This discovery sheds new light on the mechanisms involved in viral spread and EV propagation during acute enteroviral infection and highlights novel intracellular trafficking protein targets for antiviral therapy.


Assuntos
Infecções por Coxsackievirus , Enterovirus , Vesículas Extracelulares , Pancreatite , Doença Aguda , Proteínas Reguladoras de Apoptose/genética , Autofagia , Enterovirus/genética , Enterovirus Humano B/genética , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Serina-Treonina Quinases/genética , RNA de Cadeia Dupla , RNA Interferente Pequeno , Replicação Viral/genética
4.
Front Cell Neurosci ; 17: 1179796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346371

RESUMO

While motor and cortical neurons are affected in C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated C9orf72 ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, C9orf72 ALS/FTD iPSC-MG mono-cultures form G4C2 repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins. Healthy control and C9orf72 ALS/FTD iPSC-MG equally express microglial specific genes and perform microglial functions, including inflammatory cytokine release and phagocytosis of extracellular cargos, such as synthetic amyloid beta peptides and healthy human brain synaptoneurosomes. RNA sequencing analysis revealed select transcriptional changes of genes associated with neuroinflammation or neurodegeneration in diseased microglia yet no significant differentially expressed microglial-enriched genes. Moderate molecular and functional differences were observed in C9orf72 iPSC-MG mono-cultures despite the presence of C9orf72 pathological features suggesting that a diseased microenvironment may be required to induce phenotypic changes in microglial cells and the associated neuronal dysfunction seen in C9orf72 ALS/FTD neurodegeneration.

5.
Biochem Biophys Res Commun ; 423(4): 661-6, 2012 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-22695116

RESUMO

Glycine serves as a neurotransmitter in spinal cord and brain stem, where it activates inhibitory glycine receptors. In addition, it serves as an essential co-agonist of excitatory N-methyl-d-aspartate receptors. In the central nervous system, extracellular glycine concentrations are regulated by two specific glycine transporters (GlyTs), GlyT1 and GlyT2. Here, we determined the relative transport activities and protein levels of GlyT1 and GlyT2 in membrane preparations from mouse brain stem and spinal cord at different developmental stages. We report that early postnatally (up to postnatal day P5) GlyT1 is the predominant transporter isoform responsible for a major fraction of the GlyT-mediated [(3)H]glycine uptake. At later stages (≥ P10), however, the transport activity and expression of GlyT2 increases, and in membrane fractions from adult mice both GlyTs contribute about equally to glycine uptake. These alterations in the activities and expression profiles of the GlyTs suggest that the contributions of GlyT1 and GlyT2 to the regulation of extracellular glycine concentrations at glycinergic synapses changes during development.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Proteínas da Membrana Plasmática de Transporte de Glicina/biossíntese , Glicina/metabolismo , Medula Espinal/crescimento & desenvolvimento , Animais , Transporte Biológico , Tronco Encefálico/metabolismo , Proteínas da Membrana Plasmática de Transporte de Glicina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Glicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Oócitos , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Medula Espinal/metabolismo , Xenopus laevis
6.
Biochem Biophys Res Commun ; 410(4): 737-43, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21683688

RESUMO

Channelrhodopsin 2 (ChR2) is a microbial-type rhodopsin with a putative heptahelical structure that binds all-trans-retinal. Blue light illumination of ChR2 activates an intrinsic leak channel conductive for cations. Sequence comparison of ChR2 with the related ChR1 protein revealed a cluster of charged amino acids within the predicted transmembrane domain 2 (TM2), which includes glutamates E90, E97 and E101. Charge inversion substitutions of these residues significantly altered ChR2 function as revealed by two-electrode voltage-clamp recordings of light-induced currents from Xenopus laevis oocytes expressing the respective mutant proteins. Specifically, replacement of E90 by lysine or alanine resulted in differential effects on H(+)- and Na(+)-mediated currents. Our results are consistent with this glutamate side chain within the proposed TM2 contributing to ion flux through and the cation selectivity of ChR2.


Assuntos
Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Cátions/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/genética , Concentração de Íons de Hidrogênio , Transporte de Íons , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína/genética , Rodopsina/química , Rodopsina/genética , Xenopus laevis
7.
Neuron ; 109(14): 2275-2291.e8, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34133945

RESUMO

C9orf72 repeat expansions cause inherited amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) and result in both loss of C9orf72 protein expression and production of potentially toxic RNA and dipeptide repeat proteins. In addition to ALS/FTD, C9orf72 repeat expansions have been reported in a broad array of neurodegenerative syndromes, including Alzheimer's disease. Here we show that C9orf72 deficiency promotes a change in the homeostatic signature in microglia and a transition to an inflammatory state characterized by an enhanced type I IFN signature. Furthermore, C9orf72-depleted microglia trigger age-dependent neuronal defects, in particular enhanced cortical synaptic pruning, leading to altered learning and memory behaviors in mice. Interestingly, C9orf72-deficient microglia promote enhanced synapse loss and neuronal deficits in a mouse model of amyloid accumulation while paradoxically improving plaque clearance. These findings suggest that altered microglial function due to decreased C9orf72 expression directly contributes to neurodegeneration in repeat expansion carriers independent of gain-of-function toxicities.


Assuntos
Envelhecimento/metabolismo , Amiloide/metabolismo , Proteína C9orf72/metabolismo , Microglia/metabolismo , Sinapses/metabolismo , Envelhecimento/genética , Envelhecimento/patologia , Amiloide/genética , Animais , Proteína C9orf72/genética , Expansão das Repetições de DNA , Modelos Animais de Doenças , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Sinapses/patologia
8.
J Clin Invest ; 127(9): 3250-3258, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28737506

RESUMO

Amyotrophic lateral sclerosis (ALS) is a degenerative disorder that is characterized by loss of motor neurons and shows clinical, pathological, and genetic overlap with frontotemporal dementia (FTD). Activated microglia are a universal feature of ALS/FTD pathology; however, their role in disease pathogenesis remains incompletely understood. The recent discovery that ORF 72 on chromosome 9 (C9orf72), the gene most commonly mutated in ALS/FTD, has an important role in myeloid cells opened the possibility that altered microglial function plays an active role in disease. This Review highlights the contribution of microglia to ALS/FTD pathogenesis, discusses the connection between autoimmunity and ALS/FTD, and explores the possibility that C9orf72 and other ALS/FTD genes may have a "dual effect" on both neuronal and myeloid cell function that could explain a shared propensity for altered systemic immunity and neurodegeneration.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Microglia/patologia , Proteínas/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Autoimunidade , Proteína C9orf72 , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Demência Frontotemporal/patologia , Predisposição Genética para Doença , Humanos , Inflamação , Camundongos , Microglia/metabolismo , Neurônios Motores/metabolismo , Mutação , Células Mieloides/metabolismo , Fenótipo , Superóxido Dismutase-1/genética
9.
Neuron ; 88(5): 892-901, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26637796

RESUMO

Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/patologia , Expansão das Repetições de DNA/genética , Demência Frontotemporal/patologia , Proteínas/genética , Medula Espinal/patologia , Fatores Etários , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Encéfalo/metabolismo , Proteína C9orf72 , Células Cultivadas , Cromossomos Artificiais Bacterianos/genética , Cromossomos Artificiais Bacterianos/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/genética , Demência Frontotemporal/fisiopatologia , Ácido Glutâmico/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Força Muscular/genética , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Neurônios/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA