Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Integr Plant Biol ; 66(6): 1206-1226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517216

RESUMO

At the physiological level, the interplay between auxin and ethylene has long been recognized as crucial for the regulation of organ abscission in plants. However, the underlying molecular mechanisms remain unknown. Here, we identified transcription factors involved in indoleacetic acid (IAA) and ethylene (ET) signaling that directly regulate the expression of INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) and its receptor HAESA (HAE), which are key components initiating abscission. Specifically, litchi IDA-like 1 (LcIDL1) interacts with the receptor HAESA-like 2 (LcHSL2). Through in vitro and in vivo experiments, we determined that the auxin response factor LcARF5 directly binds and activates both LcIDL1 and LcHSL2. Furthermore, we found that the ETHYLENE INSENSITIVE 3-like transcription factor LcEIL3 directly binds and activates LcIDL1. The expression of IDA and HSL2 homologs was enhanced in LcARF5 and LcEIL3 transgenic Arabidopsis plants, but reduced in ein3 eil1 mutants. Consistently, the expressions of LcIDL1 and LcHSL2 were significantly decreased in LcARF5- and LcEIL3-silenced fruitlet abscission zones (FAZ), which correlated with a lower rate of fruitlet abscission. Depletion of auxin led to an increase in 1-aminocyclopropane-1-carboxylic acid (the precursor of ethylene) levels in the litchi FAZ, followed by abscission activation. Throughout this process, LcARF5 and LcEIL3 were induced in the FAZ. Collectively, our findings suggest that the molecular interactions between litchi AUXIN RESPONSE FACTOR 5 (LcARF5)-LcIDL1/LcHSL2 and LcEIL3-LcIDL1 signaling modules play a role in regulating fruitlet abscission in litchi and provide a long-sought mechanistic explanation for how the interplay between auxin and ethylene is translated into the molecular events that initiate abscission.


Assuntos
Etilenos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Litchi , Proteínas de Plantas , Transdução de Sinais , Ácidos Indolacéticos/metabolismo , Etilenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais/genética , Litchi/metabolismo , Litchi/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Plantas Geneticamente Modificadas , Frutas/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento
2.
Elife ; 122024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38896460

RESUMO

The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA