Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 205(6): e0002923, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37260386

RESUMO

Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.


Assuntos
Bacteriocinas , Bacteriófagos , Humanos , Piocinas/farmacologia , Pseudomonas aeruginosa/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriófagos/metabolismo
2.
J Bacteriol ; 202(19)2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32690555

RESUMO

Many bacterial cell surface glycans, such as the O antigen component of lipopolysaccharide (LPS), are produced via the so-called Wzx/Wzy- or ABC transporter-dependent pathways. O antigens are highly diverse polysaccharides that protect bacteria from their environment and engage in important host-pathogen interactions. The specific structure and composition of O antigens are the basis of classifying bacteria into O serotypes. In the opportunistic pathogen Pseudomonas aeruginosa, there are currently 20 known O-specific antigen (OSA) structures. The clusters of genes responsible for 18 of these O antigens have been identified, all of which follow the Wzx/Wzy-dependent pathway and are located at a common locus. In this study, we located the two unidentified O antigen biosynthesis clusters responsible for the synthesis of the O15 and the O17 OSA structures by analyzing published whole-genome sequence data. Intriguingly, these clusters were found outside the conserved OSA biosynthesis locus and were likely acquired through multiple horizontal gene transfer events. Based on data from knockout and overexpression studies, we determined that the synthesis of these O antigens follows an ABC transporter-dependent rather than a Wzx/Wzy-dependent pathway. In addition, we collected evidence to show that the O15 and O17 polysaccharide chain lengths are regulated by molecular rulers with distinct and variable domain architectures. The findings in this report are critical for a comprehensive understanding of O antigen biosynthesis in P. aeruginosa and provide a framework for future studies.IMPORTANCEP. aeruginosa is a problematic opportunistic pathogen that causes diseases in those with compromised host defenses, such as those suffering from cystic fibrosis. This bacterium produces a number of virulence factors, including a serotype-specific O antigen. Here, we identified and characterized the gene clusters that produce the O15 and O17 O antigens and show that they utilize a pathway for synthesis that is distinct from that of the 18 other known serotypes. We also provide evidence that these clusters have acquired mutations in specific biosynthesis genes and have undergone extensive horizontal gene transfer within the P. aeruginosa population. These findings expand on our understanding of O antigen biosynthesis in Gram-negative bacteria and the mechanisms that drive O antigen diversity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Variação Genética , Antígenos O/biossíntese , Antígenos O/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/isolamento & purificação , Técnicas de Inativação de Genes , Transferência Genética Horizontal , Genes Bacterianos/genética , Lipopolissacarídeos/metabolismo , Metiltransferases , Filogenia , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/classificação , Sorogrupo
3.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109993

RESUMO

The outer leaflet of the outer membrane of nearly all Gram-negative bacteria contains lipopolysaccharide (LPS). The distal end of LPS may be capped with O antigen, a long polysaccharide that can range from a few to hundreds of sugars in length. The chain length of the polysaccharide has many implications for bacterial survival and consequently is tightly controlled. In the Wzx/Wzy-dependent route of O antigen synthesis, one or more Wzz proteins determine the chain length via an unknown mechanism. To gain insight into this mechanism, we identified and characterized important regions of two Wzz proteins in Pseudomonas aeruginosa serotype O13, which confer the production of "long" (Wzz1) and "very long" (Wzz2) chain lengths, respectively. We found that compared to Wzz1, Wzz2 has distinct amino acid insertions in the central α-helices (insα6 and insα7) and in membrane-distal (insL4) and -proximal (insIL) loops. When these regions were deleted in Wzz2, the mutant proteins conferred drastically shortened chain lengths. Within these regions we identified several conserved amino acid residues that were then targeted for site-directed mutagenesis. Our results implicate an RTE motif in loop 4 and a "hot spot" of charged and polar residues in insα7 in the function of Wzz2 We present evidence that the functionally important residues of insα7 are likely involved in stabilizing Wzz through coiled-coil interactions.IMPORTANCE O antigen is an important virulence factor presented on the cell surface of Gram-negative bacteria that is critical for bacterial physiology and pathogenesis. However, some aspects of O antigen biosynthesis, such as the mechanisms for determining polysaccharide chain length, are poorly understood. In this study, we identified unique regions in the O antigen chain length regulators (termed Wzz) of the problematic opportunistic pathogen Pseudomonas aeruginosa We show that these regions are critical for determining O antigen chain length, which provides new insight into the model of the Wzz mechanism. Ultimately, our work adds knowledge toward understanding an important step in the biosynthesis of this virulence factor, which is applicable to a wide range of Gram-negative pathogens.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Antígenos O/química , Pseudomonas aeruginosa/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Antígenos O/metabolismo , Conformação Proteica em alfa-Hélice , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Alinhamento de Sequência
4.
J Bacteriol ; 201(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30322851

RESUMO

The genus Neisseria includes three major species of importance to human health and disease (Neisseria gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica) that express broad-spectrum O-linked protein glycosylation (Pgl) systems. The potential for related Pgl systems in other species in the genus, however, remains to be determined. Using a strain of Neisseria elongata subsp. glycolytica, a unique tetrasaccharide glycoform consisting of di-N-acetylbacillosamine and glucose as the first two sugars followed by a rare sugar whose mass spectrometric fragmentation profile was most consistent with di-N-acetyl hexuronic acid and a N-acetylhexosamine at the nonreducing end has been identified. Based on established mechanisms for UDP-di-N-acetyl hexuronic acid biosynthesis found in other microbes, we searched for genes encoding related pathway components in the N. elongata subsp. glycolytica genome. Here, we detail the identification of such genes and the ensuing glycosylation phenotypes engendered by their inactivation. While the findings extend the conservative nature of microbial UDP-di-N-acetyl hexuronic acid biosynthesis, mutant glycosylation phenotypes reveal unique, relaxed specificities of the glycosyltransferases and oligosaccharyltransferases to incorporate pathway intermediate UDP-sugars into mature glycoforms.IMPORTANCE Broad-spectrum protein glycosylation (Pgl) systems are well recognized in bacteria and archaea. Knowledge of how these systems relate structurally, biochemically, and evolutionarily to one another and to others associated with microbial surface glycoconjugate expression is still incomplete. Here, we detail reverse genetic efforts toward characterization of protein glycosylation mutants of N. elongata subsp. glycolytica that define the biosynthesis of a conserved but relatively rare UDP-sugar precursor. The results show both a significant degree of intra- and transkingdom conservation in the utilization of UDP-di-N-acetyl-glucuronic acid and singular properties related to the relaxed specificities of the N. elongata subsp. glycolytica system.


Assuntos
Proteínas de Bactérias/metabolismo , Glucanos/metabolismo , Glicosiltransferases/metabolismo , Redes e Vias Metabólicas/genética , Neisseria elongata/enzimologia , Neisseria elongata/metabolismo , Proteínas de Bactérias/genética , Biologia Computacional , Inativação Gênica , Glicosilação , Glicosiltransferases/genética , Neisseria elongata/genética
5.
Curr Top Microbiol Immunol ; 404: 95-128, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26853690

RESUMO

Bacterial polysaccharides play an essential role in cell viability, virulence, and evasion of host defenses. Although the polysaccharides themselves are highly diverse, the pathways by which bacteria synthesize these essential polymers are conserved in both Gram-negative and Gram-positive organisms. By utilizing a lipid linker, a series of glycosyltransferases and integral membrane proteins act in concert to synthesize capsular polysaccharide, teichoic acid, and teichuronic acid. The pathways used to produce these molecules are the Wzx/Wzy-dependent, the ABC-transporter-dependent, and the synthase-dependent pathways. This chapter will cover the initiation, synthesis of the various polysaccharides on the cytoplasmic face of the membrane using nucleotide sugar precursors, and export of the nascent chain from the cytoplasm to the extracellular milieu. As microbial glycobiology is an emerging field in Gram-positive bacteria research, parallels will be drawn to the more widely studied polysaccharide biosynthesis systems in Gram-negative species in order to provide greater understanding of these biologically significant molecules.


Assuntos
Bactérias Gram-Positivas/metabolismo , Polissacarídeos Bacterianos/biossíntese , Cápsulas Bacterianas/metabolismo , Membrana Celular/metabolismo , Parede Celular/metabolismo , Proteínas de Escherichia coli/fisiologia , Glicosiltransferases/fisiologia , Ácidos Teicoicos/biossíntese , Ácidos Urônicos/metabolismo
6.
BMC Microbiol ; 17(1): 31, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28173753

RESUMO

BACKGROUND: Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1) is one of the largest genomic islands of this important opportunistic human pathogen. Previous studies have shown that PAPI-1 encodes several putative virulence factors, including a major regulator of biofilm formation and antibiotic-resistance traits. PAPI-1 is horizontally transferable into recipient strains lacking this island via conjugation mediated by the specialized type IV pilus. The PAPI-1 encodes a cluster of ten genes associated with the synthesis and assembly of the type IV pilus. The PAPI-1 acquisition mechanism is currently not well understood. RESULTS: In this study, we performed a series of conjugation experiments and identified determinants of PAPI-1 acquisition by analyzing transfer efficiency between the donor and a series of mutant recipient strains. Our data show that common polysaccharide antigen (CPA) lipopolysaccharide (LPS), a homopolymer of D-rhamnose, is required for initiating PAPI-1 transfer, suggesting that this structure acts as a receptor for conjugative type IV pilus in recipient strains. These results were substantiated by experimental evidence from PAPI-1 transfer assay experiments, in which outer membrane or LPS preparations from well-defined LPS mutants were added to the transfer mix to assess the role of P. aeruginosa LPS in PAPI-1 transfer and in vitro binding experiments between pilin fusion protein GST-pilV2' and immobilized LPS molecules were performed. Our data also showed that P. aeruginosa strains that had already acquired a copy of PAPI-1 were unable to import additional copies of the island, and that such strains produced proportionally lower amounts of CPA LPS compared to the strains lacking PAPI-1. CONCLUSIONS: These results suggest that a PAPI-1 exclusion mechanism exists in P. aeruginosa that might serve to regulate the avoidance of uncontrolled expansions of the bacterial genome.


Assuntos
Transferência Genética Horizontal , Ilhas Genômicas/genética , Lipopolissacarídeos/metabolismo , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/química , Cromossomos Bacterianos , Conjugação Genética/genética , Conjugação Genética/fisiologia , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Genoma Bacteriano/fisiologia , Ilhas Genômicas/efeitos dos fármacos , Humanos , Lipopolissacarídeos/química , Família Multigênica , Mutação , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/patogenicidade , Ramnose/farmacologia , Fatores de Virulência/genética
7.
J Clin Microbiol ; 54(7): 1782-1788, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098958

RESUMO

Accurate typing methods are required for efficient infection control. The emergence of whole-genome sequencing (WGS) technologies has enabled the development of genome-based methods applicable for routine typing and surveillance of bacterial pathogens. In this study, we developed the Pseudomonas aeruginosa serotyper (PAst) program, which enabled in silico serotyping of P. aeruginosa isolates using WGS data. PAst has been made publically available as a web service and aptly facilitates high-throughput serotyping analysis. The program overcomes critical issues such as the loss of in vitro typeability often associated with P. aeruginosa isolates from chronic infections and quickly determines the serogroup of an isolate based on the sequence of the O-specific antigen (OSA) gene cluster. Here, PAst analysis of 1,649 genomes resulted in successful serogroup assignments in 99.27% of the cases. This frequency is rarely achievable by conventional serotyping methods. The limited number of nontypeable isolates found using PAst was the result of either a complete absence of OSA genes in the genomes or the artifact of genomic misassembly. With PAst, P. aeruginosa serotype data can be obtained from WGS information alone. PAst is a highly efficient alternative to conventional serotyping methods in relation to outbreak surveillance of serotype O12 and other high-risk clones, while maintaining backward compatibility to historical serotype data.


Assuntos
Biologia Computacional , Genoma Bacteriano , Antígenos O/genética , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Sorotipagem/métodos , Humanos , Rubiaceae , Sensibilidade e Especificidade
8.
J Bacteriol ; 197(17): 2780-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26078447

RESUMO

UNLABELLED: Pseudomonas aeruginosa PA14 is widely used by researchers in many laboratories because of its enhanced virulence over strain PAO1 in a wide range of hosts. Although lipopolysaccharide (LPS) is an important virulence factor of all P. aeruginosa strains, the LPS of PA14 has not been characterized fully. A recent study showed that the structure of its O-specific antigen (OSA) belongs to serotype O19. We found that the OSA gene cluster of PA14 shares ∼99% identity with those of the O10/O19 group. These two serotypes share the same O-unit structure, except for an O-acetyl substitution in one of the sugars in O10. Here we showed that both PA14 and O19 LPS cross-reacted with the O10-specific monoclonal antibody MF76-2 in Western blots. Analysis by SDS-PAGE and silver staining showed that PA14 LPS exhibited modal chain lengths that were different from those of O19 LPS, in that only "very long" and "short" chain lengths were observed, while "medium" and "long" chain lengths were not detected. Two other novel observations included the lack of the uncapped core oligosaccharide epitope and of common polysaccharide antigen (CPA) LPS. The lack of the uncapped core oligosaccharide was caused by point mutations in the glycosyltransferase gene migA, while the CPA-negative phenotype was correlated with a single amino acid substitution, G20R, in the glycosyltransferase WbpX. Additionally, we showed that restoring CPA biosynthesis in PA14 significantly stimulated mature biofilm formation after 72 h, while outer membrane vesicle production was not affected. IMPORTANCE: P. aeruginosa PA14 is a clinical isolate that has become an important reference strain used by many researchers worldwide. LPS of PA14 has not been characterized fully, and hence, confusion about its phenotype exists in the literature. In the present study, we set out to characterize the O-specific antigen (OSA), the common polysaccharide antigen (CPA), and the core oligosaccharide produced by PA14. We present evidence that PA14 produces an LPS consisting of "very-long-chain" and some "short-chain" OSA belonging to the O19 serotype but is devoid of CPA and the uncapped core oligosaccharide epitope. These intrinsic defects in PA14 LPS were due to single-nucleotide polymorphisms (SNPs) in the genes that encode glycosyltransferases in the corresponding biosynthesis pathways. Since sugars in CPA and the uncapped core are receptors for different bacteriocins and pyocins, the lack of CPA and an intact core may contribute to the increased virulence of PA14. Restoring CPA production in PA14 was found to stimulate mature biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Glicosiltransferases/genética , Lipopolissacarídeos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Pseudomonas aeruginosa/enzimologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicosiltransferases/metabolismo , Lipopolissacarídeos/química , Mutação Puntual , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Sorogrupo
9.
J Bacteriol ; 197(12): 2012-9, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25845842

RESUMO

UNLABELLED: The opportunistic pathogen Pseudomonas aeruginosa produces two major cell surface lipopolysaccharides, characterized by distinct O antigens, called common polysaccharide antigen (CPA) and O-specific antigen (OSA). CPA contains a polymer of D-rhamnose (D-Rha) in α1-2 and α1-3 linkages. Three putative glycosyltransferase genes, wbpX, wbpY, and wbpZ, are part of the CPA biosynthesis cluster. To characterize the enzymatic function of the wbpZ gene product, we chemically synthesized the donor substrate GDP-D-Rha and enzymatically synthesized GDP-D-[(3)H]Rha. Using nuclear magnetic resonance (NMR) spectroscopy, we showed that WbpZ transferred one D-Rha residue from GDP-D-Rha in α1-3 linkage to both GlcNAc- and GalNAc-diphosphate-lipid acceptor substrates. WbpZ is also capable of transferring D-mannose (D-Man) to these acceptors. Therefore, WbpZ has a relaxed specificity with respect to both acceptor and donor substrates. The diphosphate group of the acceptor, however, is required for activity. WbpZ does not require divalent metal ion for activity and exhibits an unusually high pH optimum of 9. WbpZ from PAO1 is therefore a GDP-D-Rha:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-rhamnosyltransferase that has significant activity of GDP-D-Man:GlcNAc/GalNAc-diphosphate-lipid α1,3-D-mannosyltransferase. We used site-directed mutagenesis to replace the Asp residues of the two DXD motifs with Ala. Neither of the mutant constructs of wbpZ (D172A or D254A) could be used to rescue CPA biosynthesis in the ΔwbpZ knockout mutant in a complementation assay. This suggested that D172 and D254 are essential for WbpZ function. This work is the first detailed characterization study of a D-Rha-transferase and a critical step in the development of CPA synthesis inhibitors. IMPORTANCE: This is the first characterization of a D-rhamnosyltransferase and shows that it is essential in Pseudomonas aeruginosa for the synthesis of the common polysaccharide antigen.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Glicosiltransferases/metabolismo , Polissacarídeos Bacterianos/metabolismo , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicosiltransferases/genética , Mutação , Polissacarídeos Bacterianos/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/imunologia , Especificidade por Substrato
10.
Antimicrob Agents Chemother ; 59(12): 7276-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26369970

RESUMO

The ribosome-targeting antimicrobial, spectinomycin (SPC), strongly induced the mexXY genes of the MexXY-OprM multidrug efflux system in Pseudomonas aeruginosa and increased susceptibility to the polycationic antimicrobials polymyxin B and polymyxin E, concomitant with a decrease in expression of the polymyxin resistance-promoting lipopolysaccharide (LPS) modification loci, arnBCADTEF and PA4773-74. Consistent with the SPC-promoted reduction in arn and PA4773-74 expression being linked to mexXY, expression of these LPS modification loci was moderated in a mutant constitutively expressing mexXY and enhanced in a mutant lacking the efflux genes. Still, the SPC-mediated increase in polymyxin susceptibility was retained in mutants lacking arnB and/or PA4773-74, an indication that their reduced expression in SPC-treated cells does not explain the enhanced polymyxin susceptibility. That the polymyxin susceptibility of a mutant strain lacking mexXY was unaffected by SPC exposure, however, was an indication that the unknown polymyxin resistance 'mechanism' is also influenced by the MexXY status of the cell. In agreement with SPC and MexXY influencing polymyxin susceptibility as a result of changes in the LPS target of these agents, SPC treatment yielded a decline in common polysaccharide antigen (CPA) synthesis in wild-type P. aeruginosa but not in the ΔmexXY mutant. A mutant lacking CPA still showed the SPC-mediated decline in polymyxin MICs, however, indicating that the loss of CPA did not explain the SPC-mediated MexXY-dependent increase in polymyxin susceptibility. It is possible, therefore, that some additional change in LPS promoted by SPC-induced mexXY expression impacted CPA synthesis or its incorporation into LPS and that this was responsible for the observed changes in polymyxin susceptibility.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Colistina/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Polimixina B/farmacologia , Pseudomonas aeruginosa/genética , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Deleção de Genes , Loci Gênicos , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Espectinomicina/farmacologia
11.
J Bacteriol ; 196(7): 1306-17, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24464462

RESUMO

Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development.


Assuntos
Biofilmes , Membrana Celular/metabolismo , Antígenos O/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Regulação Bacteriana da Expressão Gênica , Antígenos O/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento
12.
Mol Microbiol ; 89(3): 464-78, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23750877

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen producing a variety of virulence factors. One of them is lipopolysaccharide, consisting of endotoxic lipid A and long-chain O-antigen polysaccharide, which are connected together through a short linker region, called core oligosaccharide. Chemical structures of the core oligosaccharide are well conserved, with one exception, in that certain strains of P. aeruginosa add a terminal glucose residue (Glc(IV) ) to core by a transferase reaction, due to the activity of a glucosyltransferase, WapB. Here, we investigated the regulation of wapB expression. Our results showed that while the majority of analysed genomes of P. aeruginosa contain wapB, many of these have a conserved identical 5-nucleotide deletion in the upstream region that inactivated the promoter. This deletion is within the -10 hexamer that is recognized by a principle sigma factor (RpoD, or σ70) as proven by data from an electromobility shift assay. These results provide the molecular basis of why LPS core of many P. aeruginosa strains is lacking Glc(IV) . In addition, we show that absence of Glc(IV) due to an inactive wapB promoter confers resistance to killing by R3-pyocin, a phage tail-like bacteriocin of P. aeruginosa.


Assuntos
Oligossacarídeos/química , Regiões Promotoras Genéticas , Pseudomonas aeruginosa/genética , Piocinas/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Glucose/química , Lipídeo A/química , Dados de Sequência Molecular , Antígenos O/química , Pseudomonas aeruginosa/fisiologia , Deleção de Sequência , Fator sigma/metabolismo
13.
Can J Microbiol ; 60(11): 697-716, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25358682

RESUMO

The surfaces of bacteria mediate a multitude of functions in the environment and in an infected host, including adhesion to both biotic and abiotic substrata, motility, immune system interaction and (or) activation, biofilm formation, and cell-cell communication, with many of these features directly influenced by cell-surface glycans. In both Gram-negative and Gram-positive bacteria, the majority of cell-surface polysaccharides are produced via the Wzx/Wzy-dependent assembly pathway; these glycans include heteropolymeric O-antigen, enterobacterial common antigen, exopolysaccharide, spore coat, and capsule in diverse bacteria. The key components of this assembly pathway are the integral inner membrane Wzx flippase, Wzy polymerase, and Wzz chain-length regulator proteins, which until recently have resisted detailed structural and functional characterization. In this review, we have provided a comprehensive synthesis of the latest structural and mechanistic data for each protein, as well as an examination of substrate specificity for each assembly step and complex formation between the constituent proteins. To complement the unprecedented explosion of genomic-sequencing data for bacteria, we have also highlighted both classical and state-of-the-art methods by which encoded Wzx, Wzy, and Wzz proteins can be reliably identified and annotated, using the model Gram-negative bacterium Pseudomonas aeruginosa as an example data set. Lastly, we outline future avenues of research, with the aim of stimulating researchers to take the next steps in investigating the function of, and interplay between, the constituents of this widespread assembly scheme.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Glicosiltransferases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Polissacarídeos Bacterianos/biossíntese , Pseudomonas aeruginosa/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Vias Biossintéticas , Membrana Celular/química , Membrana Celular/metabolismo , Genes Bacterianos , Glicosiltransferases/química , Glicosiltransferases/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Antígenos O/biossíntese , Antígenos O/química , Antígenos O/genética , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/genética , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
14.
J Bacteriol ; 195(20): 4735-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23955007

RESUMO

Lysogenic bacteriophage D3 causes seroconversion of Pseudomonas aeruginosa PAO1 from serotype O5 to O16 by inverting the linkage between O-specific antigen (OSA) repeat units from α to ß. The OSA units are polymerized by Wzy to modal lengths regulated by Wzz1 and Wzz2. A key component of the D3 seroconversion machinery is the inhibitor of α-polymerase (Iap) peptide, which is able to solely suppress α-linked long-chain OSA production in P. aeruginosa PAO1. To establish the target specificity of Iap for Wzyα, changes in OSA phenotypes were examined via Western immunoblotting for wzz1 and wzz2 single-knockout strains, as well as a wzz1 wzz2 double knockout, following the expression of iap from a tuneable vector. Increased induction of Iap expression completely abrogated OSA production in the wzz1 wzz2 double mutant, while background levels of OSA production were still observed in either of the single mutants. Therefore, Iap inhibition of OSA biosynthesis was most effective in the absence of both Wzz proteins. Sequence alignment analyses revealed a high degree of similarity between Iap and the first transmembrane segment (TMS) of either Wzz1 or Wzz2. Various topology prediction analyses of the Iap sequence consistently predicted the presence of a single TMS, suggesting a propensity for Iap to insert itself into the inner membrane (IM). The compromised ability of Iap to abrogate Wzyα function in the presence of Wzz1 or Wzz2 provides compelling evidence that inhibition occurs after Wzyα inserts itself into the IM and is achieved through mimicry of the first TMS from the Wzz proteins of P. aeruginosa PAO1.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/fisiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virologia , Sequência de Aminoácidos , Antígenos de Neoplasias , Proteínas de Bactérias/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/metabolismo , Sorotipagem
15.
Mol Microbiol ; 84(6): 1165-76, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22554073

RESUMO

Heteropolymeric B-band O-antigen (O-Ag) biosynthesis in Pseudomonas aeruginosa PAO1 follows the Wzy-dependent pathway, beginning with translocation of undecaprenyl pyrophosphate-linked anionic O-Ag subunits (O units) from the inner to the outer leaflets of the inner membrane (IM). This translocation is mediated by the integral IM flippase Wzx. Through experimentally based and unbiased topological mapping, our group previously observed that Wzx possesses many charged and aromatic amino acid residues within its 12 transmembrane segments (TMS). Herein, site-directed mutagenesis targeting 102 residues was carried out on the TMS and loops of Wzx, followed by assessment of each construct's ability to restore B-band O-Ag production, identifying eight residues important for flippase function. The importance of various charged and aromatic residues was highlighted, predominantly within the TMS of the protein, revealing functional 'hotspots' within the flippase, particularly within TMS2 and TMS8. Construction of a tertiary structure homology model for Wzx indicated that TMS2 and TMS8 line a central cationic lumen. This is the first report to describe a charged flippase lumen for mediating anionic O-unit translocation across the hydrophobic IM.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Antígenos O/metabolismo , Pseudomonas aeruginosa/enzimologia , Substituição de Aminoácidos , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformação Proteica , Pseudomonas aeruginosa/genética
16.
Antimicrob Agents Chemother ; 57(1): 110-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23070157

RESUMO

Multidrug resistance in Pseudomonas aeruginosa is increasingly becoming a threat for human health. Indeed, some strains are resistant to almost all currently available antibiotics, leaving very limited choices for antimicrobial therapy. In many such cases, polymyxins are the only available option, although as their utilization increases so does the isolation of resistant strains. In this study, we screened a comprehensive PA14 mutant library to identify genes involved in changes of susceptibility to polymyxin B in P. aeruginosa. Surprisingly, our screening revealed that the polymyxin B resistome of this microorganism is fairly small. Thus, only one resistant mutant and 17 different susceptibility/intrinsic resistance determinants were identified. Among the susceptible mutants, a significant number carried transposon insertions in lipopolysaccharide (LPS)-related genes. LPS analysis revealed that four of these mutants (galU, lptC, wapR, and ssg) had an altered banding profile in SDS-polyacrylamide gels and Western blots, with three of them exhibiting LPS core truncation and lack of O-antigen decoration. Further characterization of these four mutants showed that their increased susceptibility to polymyxin B was partly due to increased basal outer membrane permeability. Additionally, these mutants also lacked the aminoarabinose-substituted lipid A species observed in the wild type upon growth in low magnesium. Overall, our results emphasize the importance of LPS integrity and lipid A modification in resistance to polymyxins in P. aeruginosa, highlighting the relevance of characterizing the genes that affect biosynthesis of cell surface structures in this pathogen to follow the evolution of peptide resistance in the clinic.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Genes Bacterianos , Lipopolissacarídeos/genética , Polimixina B/farmacologia , Pseudomonas aeruginosa/genética , Transcriptoma , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Elementos de DNA Transponíveis , Biblioteca Gênica , Lipopolissacarídeos/química , Mutação , Pseudomonas aeruginosa/efeitos dos fármacos
17.
Environ Microbiol ; 15(4): 1001-15, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23016929

RESUMO

Bacterial cell surface polysaccharides confer resistance to external stress and promote survival in biotic and abiotic environments. Glycan assembly often occurs at the periplasmic leaflet of the inner membrane (IM) from undecaprenyl pyrophosphate (UndPP)-linked polysaccharide units via the Wzx/Wzy-dependent pathway. Wzx is an integral IM protein found in Gram-negative and Gram-positive bacteria that mediates IM translocation of UndPP-linked sugar repeats from the cytoplasmic to the periplasmic leaflet; interaction of Wzx with other assembly proteins is indirectly supported by genetic evidence. Topological mapping has indicated 12 α-helical transmembrane segments (TMS), with the number of charged TMS residues fluctuating based on the mapping method used. A novel Wzx tertiary structure model has been built, allowing for substrate-binding or energy-coupling roles to be proposed for functionally important charged and aromatic TMS residues. It has also led to a proposed antiport-like mechanism of Wzx function. Exquisite substrate specificity of Wzx proteins was recently revealed in distinguishing between UndPP-linked substrates with identical main-chain sugar repeats, but differing in the chemical composition of a terminal sugar side-branch cap. The objective of this review is to synthesize the most up-to-date knowledge concerning Wzx flippases and to provide perspective for future investigations in this burgeoning field.


Assuntos
Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Proteínas de Transferência de Fosfolipídeos/química , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transporte Biológico Ativo , Metabolismo Energético , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte de Íons , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Periplasma/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico , Homologia Estrutural de Proteína , Especificidade por Substrato
18.
Bioorg Med Chem Lett ; 23(12): 3491-5, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23664878

RESUMO

Gram negative bacteria have lipopolysaccharides (LPS) that are critical for their survival. LPS molecules are composed of antigenic exopolysaccharide chains (O antigens). We are interested in discovering the enzymes involved in the biosynthesis of O antigens in Pseudomonas aeruginosa. The common polysaccharide antigen contains α-linked D-rhamnose residues. We have now synthesized GDP-D-rhamnose by a convenient synthesis in aqueous solution, and have shown that it can be used without extensive purification as the donor substrate for D-rhamnosyltransferase (WbpZ) from the P. aeruginosa strain PAO1. The availability of this nucleotide sugar preparation allows for characterization of D-rhamnosyltransferases.


Assuntos
Açúcares de Guanosina Difosfato/síntese química , Hexosiltransferases/metabolismo , Pseudomonas aeruginosa/enzimologia , Açúcares de Guanosina Difosfato/química , Açúcares de Guanosina Difosfato/metabolismo , Pseudomonas aeruginosa/metabolismo , Especificidade por Substrato
19.
Biofouling ; 29(10): 1169-80, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24063626

RESUMO

Pseudomonas aeruginosa and Candida albicans are disparate microbial species, but both are known to be opportunistic pathogens frequently associated with nosocomial infections. The aim of this study was to provide a better understanding of the interactions between these microorganisms in dual-species biofilms. Several bacteriophage-resistant P. aeruginosa phenotypes have been isolated and were used in dual-species mixed-biofilm studies. Twenty-four and 48 h mixed-biofilms were formed using the isolated phenotypes of phage-resistant P. aeruginosa and these were compared with similar experiments using other P. aeruginosa strains with a defined lipopolysaccharide (LPS) deficiency based on chromosomal knockout of specific LPS biosynthetic genes. Overall, the results showed that the variants of phage-resistant P. aeruginosa and LPS mutants were both less effective in inhibiting the growth of C. albicans in mixed-biofilms compared to the wild-type strains of P. aeruginosa. Conversely, the proliferation of P. aeruginosa was not influenced by the presence of C. albicans. In conclusion, the ability of strains of P. aeruginosa to inhibit the formation of a biofilm of C. albicans appears to be correlated with the LPS chain lengths of phenotypes of P. aeruginosa, suggesting that LPS has a suppressive effect on the growth of C. albicans.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Candida albicans/fisiologia , Pseudomonas aeruginosa/virologia , Candida albicans/ultraestrutura , Microscopia Eletrônica de Varredura , Fenótipo , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/ultraestrutura
20.
J Bacteriol ; 194(16): 4295-300, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22685285

RESUMO

migA and wapR are rhamnosyltransferase genes involved in the biosynthesis of Pseudomonas aeruginosa lipopolysaccharide core oligosaccharide. Here, we show that preferential expression of migA and wapR correlated with the levels of uncapped and O polysaccharide-capped core, respectively. wapR is negatively regulated, while migA is positively regulated by RhlR/RhlI quorum sensing.


Assuntos
Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Lipopolissacarídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Ligases/metabolismo , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Percepção de Quorum , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA