Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 157(4): 795-807, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24813607

RESUMO

It is widely believed that perinatal cardiomyocyte terminal differentiation blocks cytokinesis, thereby causing binucleation and limiting regenerative repair after injury. This suggests that heart growth should occur entirely by cardiomyocyte hypertrophy during preadolescence when, in mice, cardiac mass increases many-fold over a few weeks. Here, we show that a thyroid hormone surge activates the IGF-1/IGF-1-R/Akt pathway on postnatal day 15 and initiates a brief but intense proliferative burst of predominantly binuclear cardiomyocytes. This proliferation increases cardiomyocyte numbers by ~40%, causing a major disparity between heart and cardiomyocyte growth. Also, the response to cardiac injury at postnatal day 15 is intermediate between that observed at postnatal days 2 and 21, further suggesting persistence of cardiomyocyte proliferative capacity beyond the perinatal period. If replicated in humans, this may allow novel regenerative therapies for heart diseases.


Assuntos
Diferenciação Celular , Proliferação de Células , Coração/crescimento & desenvolvimento , Miócitos Cardíacos/citologia , Animais , Separação Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Tri-Iodotironina/metabolismo
2.
Nature ; 545(7652): 93-97, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445457

RESUMO

Mitochondrial calcium (mCa2+) has a central role in both metabolic regulation and cell death signalling, however its role in homeostatic function and disease is controversial. Slc8b1 encodes the mitochondrial Na+/Ca2+ exchanger (NCLX), which is proposed to be the primary mechanism for mCa2+ extrusion in excitable cells. Here we show that tamoxifen-induced deletion of Slc8b1 in adult mouse hearts causes sudden death, with less than 13% of affected mice surviving after 14 days. Lethality correlated with severe myocardial dysfunction and fulminant heart failure. Mechanistically, cardiac pathology was attributed to mCa2+ overload driving increased generation of superoxide and necrotic cell death, which was rescued by genetic inhibition of mitochondrial permeability transition pore activation. Corroborating these findings, overexpression of NCLX in the mouse heart by conditional transgenesis had the beneficial effect of augmenting mCa2+ clearance, preventing permeability transition and protecting against ischaemia-induced cardiomyocyte necrosis and heart failure. These results demonstrate the essential nature of mCa2+ efflux in cellular function and suggest that augmenting mCa2+ efflux may be a viable therapeutic strategy in disease.


Assuntos
Cálcio/metabolismo , Homeostase , Mitocôndrias/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Sobrevivência Celular , Morte Súbita , Feminino , Deleção de Genes , Células HeLa , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Masculino , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Trocador de Sódio e Cálcio/genética , Superóxidos/metabolismo , Tamoxifeno/farmacologia , Remodelação Ventricular
3.
FASEB J ; 34(4): 5642-5657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32100368

RESUMO

The adult mammalian heart has a limited regenerative capacity. Therefore, identification of endogenous cells and mechanisms that contribute to cardiac regeneration is essential for the development of targeted therapies. The side population (SP) phenotype has been used to enrich for stem cells throughout the body; however, SP cells isolated from the heart have been studied exclusively in cell culture or after transplantation, limiting our understanding of their function in vivo. We generated a new Abcg2-driven lineage-tracing mouse model with efficient labeling of SP cells. Labeled SP cells give rise to terminally differentiated cells in bone marrow and intestines. In the heart, labeled SP cells give rise to lineage-traced cardiomyocytes under homeostatic conditions with an increase in this contribution following cardiac injury. Instead of differentiating into cardiomyocytes like proposed cardiac progenitor cells, cardiac SP cells fuse with preexisting cardiomyocytes to stimulate cardiomyocyte cell cycle reentry. Our study is the first to show that fusion between cardiomyocytes and non-cardiomyocytes, identified by the SP phenotype, contribute to endogenous cardiac regeneration by triggering cardiomyocyte cell cycle reentry in the adult mammalian heart.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/fisiologia , Diferenciação Celular , Isquemia Miocárdica/patologia , Miócitos Cardíacos/citologia , Regeneração , Células da Side Population/citologia , Animais , Transplante de Medula Óssea , Linhagem da Célula , Células Cultivadas , Feminino , Masculino , Camundongos , Camundongos Knockout , Isquemia Miocárdica/terapia , Miócitos Cardíacos/metabolismo , Células da Side Population/metabolismo
4.
Circulation ; 140(21): 1720-1733, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31533452

RESUMO

BACKGROUND: The mitochondrial calcium uniporter (mtCU) is an ≈700-kD multisubunit channel residing in the inner mitochondrial membrane required for mitochondrial Ca2+ (mCa2+) uptake. Here, we detail the contribution of MCUB, a paralog of the pore-forming subunit MCU, in mtCU regulation and function and for the first time investigate the relevance of MCUB to cardiac physiology. METHODS: We created a stable MCUB knockout cell line (MCUB-/-) using CRISPR-Cas9n technology and generated a cardiac-specific, tamoxifen-inducible MCUB mutant mouse (CAG-CAT-MCUB x MCM; MCUB-Tg) for in vivo assessment of cardiac physiology and response to ischemia/reperfusion injury. Live-cell imaging and high-resolution spectrofluorometery were used to determine intracellular Ca2+ exchange and size-exclusion chromatography; blue native page and immunoprecipitation studies were used to determine the molecular function and impact of MCUB on the high-molecular-weight mtCU complex. RESULTS: Using genetic gain- and loss-of-function approaches, we show that MCUB expression displaces MCU from the functional mtCU complex and thereby decreases the association of mitochondrial calcium uptake 1 and 2 (MICU1/2) to alter channel gating. These molecular changes decrease MICU1/2-dependent cooperative activation of the mtCU, thereby decreasing mCa2+ uptake. Furthermore, we show that MCUB incorporation into the mtCU is a stress-responsive mechanism to limit mCa2+ overload during cardiac injury. Indeed, overexpression of MCUB is sufficient to decrease infarct size after ischemia/reperfusion injury. However, MCUB incorporation into the mtCU does come at a cost; acute decreases in mCa2+ uptake impair mitochondrial energetics and contractile function. CONCLUSIONS: We detail a new regulatory mechanism to modulate mtCU function and mCa2+ uptake. Our results suggest that MCUB-dependent changes in mtCU stoichiometry are a prominent regulatory mechanism to modulate mCa2+ uptake and cellular physiology.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Sistemas CRISPR-Cas , Canais de Cálcio/deficiência , Canais de Cálcio/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Técnicas de Inativação de Genes , Células HeLa , Humanos , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/patologia , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/genética , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miócitos Cardíacos/patologia , Função Ventricular Esquerda
5.
Proc Natl Acad Sci U S A ; 113(25): 6949-54, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274047

RESUMO

Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease.


Assuntos
Morte Celular , Fator de Crescimento Insulin-Like I/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Serina Endopeptidases/metabolismo , Animais , Hidrólise , Camundongos , Serina Endopeptidases/genética
6.
J Mol Cell Cardiol ; 97: 56-66, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27108530

RESUMO

Recent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart. In an effort to evaluate the potential mechanism(s) responsible for the increased injury in DJ-1 KO mice, we focused on SUMOylation, a post-translational modification process that regulates various aspects of protein function. DJ-1 KO hearts after I/R injury were found to display enhanced accumulation of SUMO-1 modified proteins and reduced SUMO-2/3 modified proteins. Further analysis, revealed that the protein expression of the de-SUMOylation enzyme SENP1 was reduced, whereas the expression of SENP5 was enhanced in DJ-1 KO hearts after I/R injury. Finally, DJ-1 KO hearts were found to display enhanced SUMO-1 modification of dynamin-related protein 1, excessive mitochondrial fission, and dysfunctional mitochondria. Our data demonstrates that the activation of DJ-1 in response to myocardial I/R injury protects the heart by regulating the SUMOylation status of Drp1 and attenuating excessive mitochondrial fission.


Assuntos
Mitocôndrias Cardíacas/genética , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Animais , Biópsia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Proteína Desglicase DJ-1/deficiência , Proteólise , Ratos , Espécies Reativas de Oxigênio , Sumoilação
7.
Nitric Oxide ; 46: 145-56, 2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25575644

RESUMO

Diabetic cardiomyopathy is a significant contributor to the morbidity and mortality associated with diabetes and metabolic syndrome. However, the underlying molecular mechanisms that lead to its development have not been fully elucidated. Hydrogen sulfide (H2S) is an endogenously produced signaling molecule that is critical for the regulation of cardiovascular homeostasis. Recently, therapeutic strategies aimed at increasing its levels have proven cardioprotective in models of acute myocardial ischemia-reperfusion injury and heart failure. The precise role of H2S in the pathogenesis of diabetic cardiomyopathy has not yet been established. Therefore, the goal of the present study was to evaluate circulating and cardiac H2S levels in a murine model of high fat diet (HFD)-induced cardiomyopathy. Diabetic cardiomyopathy was produced by feeding mice HFD (60% fat) chow for 24 weeks. HFD feeding reduced both circulating and cardiac H2S and induced hallmark features of type-2 diabetes. We also observed marked cardiac dysfunction, evidence of cardiac enlargement, cardiac hypertrophy, and fibrosis. H2S therapy (SG-1002, an orally active H2S donor) restored sulfide levels, improved some of the metabolic perturbations stemming from HFD feeding, and attenuated HFD-induced cardiac dysfunction. Additional analysis revealed that H2S therapy restored adiponectin levels and suppressed cardiac ER stress stemming from HFD feeding. These results suggest that diminished circulating and cardiac H2S levels play a role in the pathophysiology of HFD-induced cardiomyopathy. Additionally, these results suggest that H2S therapy may be of clinical importance in the treatment of cardiovascular complications stemming from diabetes.


Assuntos
Cardiomiopatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adiponectina/metabolismo , Administração Oral , Animais , Coração/efeitos dos fármacos , Sulfeto de Hidrogênio/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/química , Transdução de Sinais/efeitos dos fármacos
8.
Arterioscler Thromb Vasc Biol ; 33(4): 744-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23349187

RESUMO

OBJECTIVE: The aim of this study was to determine whether thioredoxin 1 (Trx1) mediates the cardioprotective effects of hydrogen sulfide (H2S) in a model of ischemic-induced heart failure (HF). APPROACH AND RESULTS: Mice with a cardiac-specific overexpression of a dominant negative mutant of Trx1 and wild-type littermates were subjected to ischemic-induced HF. Treatment with H2S as sodium sulfide (Na2S) not only increased the gene and protein expression of Trx1 in the absence of ischemia but also augmented the HF-induced increase in both. Wild-type mice treated with Na2S experienced less left-ventricular dilatation, improved left-ventricular function, and less cardiac hypertrophy after the induction of HF. In contrast, Na2S therapy failed to improve any of these parameters in the dominant negative mutant of Trx1 mice. Studies aimed at evaluating the underlying cardioprotective mechanisms found that Na2S therapy inhibited HF-induced apoptosis signaling kinase-1 signaling and nuclear export of histone deacetylase 4 in a Trx1-dependent manner. CONCLUSIONS: These findings provide novel information that the upregulation of Trx1 by Na2S therapy in the setting of HF sets into motion events, such as the inhibition of apoptosis signaling kinase-1 signaling and histone deacetylase 4 nuclear export, which ultimately leads to the attenuationof left-ventricular remodeling.


Assuntos
Cardiotônicos/farmacologia , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio/metabolismo , Sulfetos/farmacologia , Tiorredoxinas/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Cardiotônicos/metabolismo , Modelos Animais de Doenças , Genes Reporter , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hemodinâmica/efeitos dos fármacos , Histona Desacetilases/metabolismo , Sulfeto de Hidrogênio/metabolismo , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Luciferases/genética , Luciferases/metabolismo , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Miocárdio/patologia , Fatores de Transcrição NFATC/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos , Sulfetos/metabolismo , Tiorredoxinas/genética , Fatores de Tempo , Ultrassonografia , Regulação para Cima , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Mol Cell Cardiol ; 64: 1-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23962643

RESUMO

The infarct sparing effects of exercise are evident following both long-term and short-term training regimens. Here we compared the infarct-lowering effects of nitrite therapy, voluntary exercise, and the combination of both following myocardial ischemia-reperfusion (MI/R) injury. We also compared the degree to which each strategy increased cardiac nitrite levels, as well as the effects of each strategy on the nitrite reductase activity of the heart. Mice subjected to voluntary wheel running (VE) for 4weeks displayed an 18% reduction in infarct size when compared to sedentary mice, whereas mice administered nitrite therapy (25mg/L in drinking water) showed a 53% decrease. However, the combination of VE and nitrite exhibited no further protection than VE alone. Although the VE and nitrite therapy mice showed similar nitrite levels in the heart, cardiac nitrite reductase activity was significantly reduced in the VE mice. Additionally, the cardiac protein expression of myoglobin, a known nitrite reductase, was also reduced after VE. Further studies revealed that cardiac NFAT activity was lower after VE due to a decrease in calcineurin activity and an increase in GSK3ß activity. These data suggest that VE downregulates cardiac myoglobin levels by inhibiting calcineurin/NFAT signaling. Additionally, these results suggest that the modest infarct sparing effects of VE are the result of a decrease in the hearts ability to reduce nitrite to nitric oxide during MI/R.


Assuntos
Regulação da Expressão Gênica , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Mioglobina/genética , Nitrito Redutases/metabolismo , Condicionamento Físico Animal , Animais , Cardiotônicos/administração & dosagem , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Ativação Enzimática , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Mioglobina/metabolismo , Óxido Nítrico/metabolismo , Nitritos/administração & dosagem , Nitritos/metabolismo
10.
Am J Physiol Heart Circ Physiol ; 304(9): H1215-24, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23479260

RESUMO

Hydrogen sulfide (H2S) therapy protects nondiabetic animals in various models of myocardial injury, including acute myocardial infarction and heart failure. Here, we sought to examine whether H2S therapy provides cardioprotection in the setting of type 2 diabetes. H2S therapy in the form of sodium sulfide (Na2S) beginning 24 h or 7 days before myocardial ischemia significantly decreased myocardial injury in db/db diabetic mice (12 wk of age). In an effort to evaluate the signaling mechanism responsible for the observed cardioprotection, we focused on the role of nuclear factor E2-related factor (Nrf2) signaling. Our results indicate that diabetes does not alter the ability of H2S to increase the nuclear localization of Nrf2, but does impair aspects of Nrf2 signaling. Specifically, the expression of NADPH quinine oxidoreductase 1 was increased after the acute treatment, whereas the expression of heme-oxygenase-1 (HO-1) was only increased after 7 days of treatment. This discrepancy was found to be the result of an increased nuclear expression of Bach1, a known repressor of HO-1 transcription, which blocked the binding of Nrf2 to the HO-1 promoter. Further analysis revealed that 7 days of Na2S treatment overcame this impairment by removing Bach1 from the nucleus in an Erk1/2-dependent manner. Our findings demonstrate for the first time that exogenous administration of Na2S attenuates myocardial ischemia-reperfusion injury in db/db mice, suggesting the potential therapeutic effects of H2S in treating a heart attack in the setting of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/complicações , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , Sulfetos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA