Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Cybern ; 52(9): 9656-9669, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33784632

RESUMO

The broad learning system (BLS) is an algorithm that facilitates feature representation learning and data classification. Although weights of BLS are obtained by analytical computation, which brings better generalization and higher efficiency, BLS suffers from two drawbacks: 1) the performance depends on the number of hidden nodes, which requires manual tuning, and 2) double random mappings bring about the uncertainty, which leads to poor resistance to noise data, as well as unpredictable effects on performance. To address these issues, a kernel-based BLS (KBLS) method is proposed by projecting feature nodes obtained from the first random mapping into kernel space. This manipulation reduces the uncertainty, which contributes to performance improvements with the fixed number of hidden nodes, and indicates that manually tuning is no longer needed. Moreover, to further improve the stability and noise resistance of KBLS, a progressive ensemble framework is proposed, in which the residual of the previous base classifiers is used to train the following base classifier. We conduct comparative experiments against the existing state-of-the-art hierarchical learning methods on multiple noisy real-world datasets. The experimental results indicate our approaches achieve the best or at least comparable performance in terms of accuracy.


Assuntos
Algoritmos , Aprendizado Profundo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA