Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980287

RESUMO

Hybrid halide perovskites are good candidates for a range of functional materials such as optical electronic and photovoltaic devices due to their tunable band gaps, long carrier diffusion lengths, and solution processability. However, the instability in moisture/air, the toxicity of lead, and rigorous reaction setup or complex postprocessing have long been the bottlenecks for practical application. Herein, we present a simultaneous configurational entropy design at A-sites, B-sites, and X-sites in the typical (CHA)2PbBr4 two-dimensional (2D) hybrid perovskite. Our results demonstrate that the high-entropy effect favors the stabilization of the hybrid perovskite phase and facilitates a simple crystallization process without precise control of the cooling rate to prepare regular crystals. Moreover, high-entropy 2D perovskite crystals exhibit tunable energy band gaps, broadband emission, and a long carrier lifetime. Meanwhile, the high-entropy composition almost maintains the initial crystal structure in deionized water for 18 h while the original (CHA)2PbBr4 crystal mostly decomposes, suggesting obviously improved humidity stability. This work offers a facile approach to synthesize humidity-stable hybrid perovskites under mild conditions, accelerating relevant preparation of optoelectronics and light-emitting devices and facilitating the ultimate commercialization of halide perovskite.

2.
Nat Mater ; 21(9): 1074-1080, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35668148

RESUMO

Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm-3 with an efficiency of 78% at an electric field of 6.35 MV cm-1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.

3.
Adv Mater ; : e2403400, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806163

RESUMO

The compromise of contradictive parameters, polarization, and breakdown strength, is necessary to achieve a high energy storage performance. The two can be tuned, regardless of material types, by controlling microstructures: amorphous states possess higher breakdown strength, while crystalline states have larger polarization. However, how to achieve a balance of amorphous and crystalline phases requires systematic and quantitative investigations. Herein, the trade-off between polarization and breakdown field is comprehensively evaluated with the evolution of microstructure, i.e., grain size and crystallinity, by phase-field simulations. The results indicate small grain size (≈10-35 nm) with moderate crystallinity (≈60-80%) is more beneficial to maintain relatively high polarization and breakdown field simultaneously, consequently contributing to a high overall energy storage performance. Experimentally, therefore an ultrahigh energy density of 131 J cm-3 is achieved with a high efficiency of 81.6% in the microcrystal-amorphous dual-phase Bi3NdTi4O12 films. This work provides a guidance to substantially enhance dielectric energy storage by a simple and effective microstructure design.

4.
Science ; 384(6692): 185-189, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603510

RESUMO

Ultrahigh-power-density multilayer ceramic capacitors (MLCCs) are critical components in electrical and electronic systems. However, the realization of a high energy density combined with a high efficiency is a major challenge for practical applications. We propose a high-entropy design in barium titanate (BaTiO3)-based lead-free MLCCs with polymorphic relaxor phase. This strategy effectively minimizes hysteresis loss by lowering the domain-switching barriers and enhances the breakdown strength by the high atomic disorder with lattice distortion and grain refining. Benefiting from the synergistic effects, we achieved a high energy density of 20.8 joules per cubic centimeter with an ultrahigh efficiency of 97.5% in the MLCCs. This approach should be universally applicable to designing high-performance dielectrics for energy storage and other related functionalities.

5.
Biochem Biophys Res Commun ; 437(3): 440-5, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23831623

RESUMO

Lysophosphatidic acid (LPA) is a lipid growth factor with multiple biological functions and has been shown to stimulate cancer cell secretion of vascular endothelial growth factor-A (VEGF-A) and trigger angiogenesis. Hypoxia-inducible factor-1 (HIF-1), a heterodimer consisting of HIF-1α and HIF-1ß (also known as aromatic hydrocarbon receptor nuclear translocator (ARNT)) subunits, is an important regulator of angiogenesis in prostate cancer (PC) through the enhancement of VEGF-A expression. In this study, we first confirmed the ability of LPA to induce VEGF-A expression in PC-3 cells and then validated that LPA-induced VEGF-A expression was regulated by HIF-1α and ARNT through phosphatidylinositol 3-kinase activation. Aromatic hydrocarbon receptor (AHR), a receptor for dioxin-like compounds, functions as a transcription factor through dimerization with ARNT and was found to inhibit prostate carcinogenesis and vanadate-induced VEGF-A production. Since ARNT is a common dimerization partner of AHR and HIF-1α, we hypothesized that AHR might suppress LPA-induced VEGF-A expression in PC-3 cells by competing with HIF-1α for ARNT. Here we demonstrated that overexpression and ligand activation of AHR inhibited HIF-1-mediated VEGF-A induction by LPA treatment of PC-3 cells. In conclusion, our results suggested that AHR activation may inhibit LPA-induced VEGF-A expression in PC-3 cells by attenuating HIF-1α signaling, and subsequently, suppressing angiogenesis and metastasis of PC. These results suggested that AHR presents a potential therapeutic target for the prevention of PC metastasis.


Assuntos
Lisofosfolipídeos/antagonistas & inibidores , Lisofosfolipídeos/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Hidrocarboneto Arílico/fisiologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/biossíntese , Indutores da Angiogênese/antagonistas & inibidores , Translocador Nuclear Receptor Aril Hidrocarboneto/fisiologia , Linhagem Celular Tumoral , Células HEK293 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Metástase Neoplásica/patologia , Metástase Neoplásica/prevenção & controle , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Transdução de Sinais/fisiologia , Fator A de Crescimento do Endotélio Vascular/genética
6.
Sci Bull (Beijing) ; 66(11): 1080-1090, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654342

RESUMO

Large roughness and structure disorder in ferroelectric ultrathin Langmuir-Blodgett (LB) film results in severe space scatter in electrical, ferroelectric and piezoelectric characteristics, thus limiting the nanoscale research and reliability of nano-devices. However, no effective method aiming at large-area uniform organic ferroelectric LB film has ever been reported to date. Herein, we present a facile hot-pressing strategy to prepare relatively large-area poly(vinylidene fluoride) (PVDF) LB film with ultra-smooth surface root mean square (RMS) roughness is 0.3 nm in a 30 µm × 30 µm area comparable to that of metal substrate, which maximized the potential of LB technique to control thickness distribution. More importantly, compared with traditionally annealed LB film, the hot-pressed LB film manifests significantly improved structure uniformity, less fluctuation in ferroelectric characteristics and higher dielectric and piezoelectric responses, owing to the uniform dipole orientation and higher crystalline quality. Besides, different surface charge relaxation behaviors are investigated and the underlying mechanisms are explained in the light of the interplay of surface charge and polarization charge in the case of nanoscale non-uniform switching. We believe that our work not only presents a novel strategy to endow PVDF LB film with unprecedented reliability and improved performance as a competitive candidate for future ferroelectric tunnel junctions (FTJs) and nano electro mechanical systems (NEMS), but also reveals an attracting coupling effect between the surface potential distribution and nanoscale non-uniform switching behavior, which is crucial for the understanding of local transport characterization modulated by band structure, bit signal stability for data-storage application and the related surface charge research, such as charge gradient microscopy (CGM) based on the collection of surface charge on the biased ferroelectric domains.

7.
Science ; 374(6563): 100-104, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591628

RESUMO

Electrostatic energy storage technology based on dielectrics is fundamental to advanced electronics and high-power electrical systems. Recently, relaxor ferroelectrics characterized by nanodomains have shown great promise as dielectrics with high energy density and high efficiency. We demonstrate substantial enhancements of energy storage properties in relaxor ferroelectric films with a superparaelectric design. The nanodomains are scaled down to polar clusters of several unit cells so that polarization switching hysteresis is nearly eliminated while relatively high polarization is maintained. We achieve an ultrahigh energy density of 152 joules per cubic centimeter with markedly improved efficiency (>90% at an electric field of 3.5 megavolts per centimeter) in superparaelectric samarium-doped bismuth ferrite­barium titanate films. This superparaelectric strategy is generally applicable to optimize dielectric and other related functionalities of relaxor ferroelectrics.

8.
Science ; 365(6453): 578-582, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31395780

RESUMO

Dielectric capacitors with ultrahigh power densities are fundamental energy storage components in electrical and electronic systems. However, a long-standing challenge is improving their energy densities. We report dielectrics with ultrahigh energy densities designed with polymorphic nanodomains. Guided by phase-field simulations, we conceived and synthesized lead-free BiFeO3-BaTiO3-SrTiO3 solid-solution films to realize the coexistence of rhombohedral and tetragonal nanodomains embedded in a cubic matrix. We obtained minimized hysteresis while maintaining high polarization and achieved a high energy density of 112 joules per cubic centimeter with a high energy efficiency of ~80%. This approach should be generalizable for designing high-performance dielectrics and other functional materials that benefit from nanoscale domain structure manipulation.

9.
Materials (Basel) ; 11(3)2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29562701

RESUMO

The danger of toxic organic pollutants in both aquatic and air environments calls for high-efficiency purification material. Herein, layered bismuth copper oxychalcogenides, BiCuSO, nanosheets of high photocatalytic activity were introduced to the PVDF (Polyvinylidene Fluoride). The fibrous membranes provide an easy, efficient, and recyclable way to purify organic pollutant. The physical and photophysical properties of the BiCuSO and its polymer composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), ultraviolet-visible diffuse reflection spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), electron spin resonance (EPR). Photocatalysis of Congo Red reveals that the BiCuSO/PVDF shows a superior photocatalytic activity of a 55% degradation rate in 70 min at visible light. The high photocatalytic activity is attributed to the exposed active {101} facets and the triple vacant associates V B i ‴ V O • • V B i ‴ . By engineering the intrinsic defects on the surface of bismuth oxysulfide, high solar-driven photocatalytic activity can be approached. The successful fabrication of the bismuth oxysulfide and its polymer nanocomposites provides an easy and general approach for high-performance purification materials for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA