Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phytopathology ; 114(5): 869-884, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38557216

RESUMO

An unprecedented plant health emergency in olives has been registered over the last decade in Italy, arguably more severe than what occurred repeatedly in grapes in the United States in the last 140 years. These emergencies are epidemics caused by a stealthy pathogen, the xylem-limited, insect-transmitted bacterium Xylella fastidiosa. Although these epidemics spurred research that answered many questions about the biology and management of this pathogen, many gaps in knowledge remain. For this review, we set out to represent both the U.S. and European perspectives on the most pressing challenges that need to be addressed. These are presented in 10 sections that we hope will stimulate discussion and interdisciplinary research. We reviewed intrinsic problems that arise from the fastidious growth of X. fastidiosa, the lack of specificity for insect transmission, and the economic and social importance of perennial mature woody plant hosts. Epidemiological models and predictions of pathogen establishment and disease expansion, vital for preparedness, are based on very limited data. Most of the current knowledge has been gathered from a few pathosystems, whereas several hundred remain to be studied, probably including those that will become the center of the next epidemic. Unfortunately, aspects of a particular pathosystem are not always transferable to others. We recommend diversification of research topics of both fundamental and applied nature addressing multiple pathosystems. Increasing preparedness through knowledge acquisition is the best strategy to anticipate and manage diseases caused by this pathogen, described as "the most dangerous plant bacterium known worldwide."


Assuntos
Insetos Vetores , Doenças das Plantas , Xylella , Xilema , Xylella/fisiologia , Xylella/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Xilema/microbiologia , Animais , Insetos Vetores/microbiologia , Olea/microbiologia , Insetos/microbiologia , Estados Unidos , Vitis/microbiologia
2.
Phytopathology ; 113(6): 1128-1132, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36441872

RESUMO

Xylella fastidiosa is a vascular plant pathogenic bacterium native to the Americas that is causing significant epidemics and economic losses in olive and almonds in Europe, where it is a quarantine pathogen. Since its first detection in 2013 in Italy, mandatory surveys across Europe revealed the presence of the bacterium also in France, Spain, and Portugal. Combining Oxford Nanopore Technologies and Illumina sequencing data, we assembled high-quality complete genomes of seven X. fastidiosa subsp. fastidiosa strains isolated from different plants in Spain, the United States, and Mexico. Comparative genomic analyses discovered differences in plasmid content among strains, including plasmids that had been overlooked previously when using the Illumina sequencing platform alone. Interestingly, in strain CFBP8073, intercepted in France from plants imported from Mexico, three plasmids were identified, including two (plasmids pXF-P1.CFBP8073 and pXF-P2.CFBP8073) not previously described in X. fastidiosa and one (pXF5823.CFBP8073) almost identical to a plasmid described in a X. fastidiosa strain from citrus. Plasmids found in the Spanish strains here were similar to those described previously in other strains from the same subspecies and ST1 isolated in the Balearic Islands and the United States. The genome resources from this work will assist in further studies on the role of plasmids in the epidemiology, ecology, and evolution of this plant pathogen.


Assuntos
Doenças das Plantas , Xylella , Doenças das Plantas/microbiologia , Plasmídeos/genética , Europa (Continente) , Itália , Xylella/genética
3.
Plant Dis ; 107(4): 999-1004, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36190302

RESUMO

Quinoa is an expanding crop in southern Spain. Downy mildew, caused by Peronospora variabilis, is the most important quinoa disease in Spain and worldwide. In Spain, this disease has also been observed on the weed Chenopodium album. The objectives of this study were to unravel the origin of the P. variabilis isolates currently infecting quinoa in southern Spain and to study their genetic diversity. We hypothesized that P. variabilis isolates infecting quinoa in Spain could have been introduced through the seeds of the quinoa varieties currently grown in the country or, alternatively, that these isolates are endemic isolates, originally infecting C. album, that jumped to quinoa. In order to test these hypotheses, we sequenced the internal transcribed spacer (ITS), cytochrome c oxidase subunit 1 (cox1), and cox2 regions of 33 P. variabilis isolates infecting C. quinoa and C. album in southern Spain and analyzed their phylogenetic relationship with isolates present in other countries infecting Chenopodium spp. cox1 gene sequences from all of the Spanish P. variabilis isolates were identical and exhibited nine single-nucleotide polymorphisms (SNPs) compared with a single P. variabilis cox1 sequence found at GenBank. Phylogenetic analyses based on the ITS ribosomal DNA region were not suitable to differentiate isolates according to their geographical origin or host. The cox2 sequences from P. variabilis Spanish isolates collected from C. quinoa and C. album were all identical and had a distinctive SNP in the last of four polymorphic sites that distinguished Spanish isolates from isolates from other countries. These results suggest that P. variabilis infecting quinoa in southern Spain could be native isolates that originally infected C. album.[Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Chenopodium album , Chenopodium quinoa , Peronospora , Chenopodium quinoa/genética , Peronospora/genética , Chenopodium album/genética , Espanha , Filogenia , Ciclo-Oxigenase 2/genética , DNA Intergênico
4.
New Phytol ; 234(5): 1598-1605, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35279849

RESUMO

Xylella fastidiosa is the causal agent of important crop diseases and is transmitted by xylem-sap-feeding insects. The bacterium colonizes xylem vessels and can persist with a commensal or pathogen lifestyle in more than 500 plant species. In the past decade, reports of X. fastidiosa across the globe have dramatically increased its known occurrence. This raises important questions: How does X. fastidiosa interact with the different host plants? How does the bacterium interact with the plant immune system? How does it influence the host's microbiome? We discuss recent strain genetic typing and plant transcriptome and microbiome analyses, which have advanced our understanding of factors that are important for X. fastidiosa plant infection.


Assuntos
Microbiota , Xylella , Doenças das Plantas/microbiologia , Plantas
5.
J Sci Food Agric ; 101(8): 3508-3517, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33275797

RESUMO

BACKGROUND: The ingestion of wheat and other cereals are related to several gut disorders. The specific components responsible for non-celiac wheat-sensitivity (NCWS) may include gluten and other compounds. Tritordeum is a new cereal derived from crossing durum wheat with a wild barley species, which differs from bread wheat in its gluten composition. In the present work, we examined the response of NCWS patients to tritordeum bread Gastrointestinal symptoms as well as tritordeum acceptability, gluten immunogenic peptides excretion, and the composition and structure of the intestinal microbiota were evaluated. RESULTS: Gastrointestinal symptoms of the subjects showed no significant change between the gluten-free bread and the tritordeum bread. Participating subjects rated tritordeum bread higher than the gluten-free bread. Analysis of the bacterial gut microbiota indicated that tritordeum consumption does not alter the global structure and composition of the intestinal microbiota, and only a few changes in some butyrate-producing bacteria were observed. CONCLUSIONS: All the results derived from acceptability, biochemical and microbiological tests suggest that tritordeum may be tolerated by a sub-set of NCWS sufferers who do not require strict exclusion of gluten from their diet. © 2020 Society of Chemical Industry.


Assuntos
Pão/análise , Doença Celíaca/dietoterapia , Doença Celíaca/microbiologia , Microbioma Gastrointestinal , Poaceae/metabolismo , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Dieta Livre de Glúten , Feminino , Glutens/análise , Glutens/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Poaceae/química , Triticum/imunologia
6.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31704683

RESUMO

Pathogen introductions have led to numerous disease outbreaks in naive regions of the globe. The plant pathogen Xylella fastidiosa has been associated with various recent epidemics in Europe affecting agricultural crops, such as almond, grapevine, and olive, but also endemic species occurring in natural forest landscapes and ornamental plants. We compared whole-genome sequences of X. fastidiosa subspecies multiplex from America and strains associated with recent outbreaks in southern Europe to infer their likely origins and paths of introduction within and between the two continents. Phylogenetic analyses indicated multiple introductions of X. fastidiosa subspecies multiplex into Italy, Spain, and France, most of which emerged from a clade with limited genetic diversity with a likely origin in California, USA. The limited genetic diversity observed in X. fastidiosa subspecies multiplex strains originating from California is likely due to the clade itself being an introduction from X. fastidiosa subspecies multiplex populations in the southeastern United States, where this subspecies is most likely endemic. Despite the genetic diversity found in some areas in Europe, there was no clear evidence of recombination occurring among introduced X. fastidiosa strains in Europe. Sequence type taxonomy, based on multilocus sequence typing (MLST), was shown, at least in one case, to not lead to monophyletic clades of this pathogen; whole-genome sequence data were more informative in resolving the history of introductions than MLST data. Although additional data are necessary to carefully tease out the paths of these recent dispersal events, our results indicate that whole-genome sequence data should be considered when developing management strategies for X. fastidiosa outbreaks.IMPORTANCEXylella fastidiosa is an economically important plant-pathogenic bacterium that has emerged as a pathogen of global importance associated with a devastating epidemic in olive trees in Italy associated with X. fastidiosa subspecies pauca and other outbreaks in Europe, such as X. fastidiosa subspecies fastidiosa and X. fastidiosa subspecies multiplex in Spain and X. fastidiosa subspecies multiplex in France. We present evidence of multiple introductions of X. fastidiosa subspecies multiplex, likely from the United States, into Spain, Italy, and France. These introductions illustrate the risks associated with the commercial trade of plant material at global scales and the need to develop effective policy to limit the likelihood of pathogen pollution into naive regions. Our study demonstrates the need to utilize whole-genome sequence data to study X. fastidiosa introductions at outbreak stages, since a limited number of genetic markers does not provide sufficient phylogenetic resolution to determine dispersal paths or relationships among strains that are of biological and quarantine relevance.


Assuntos
Genoma Bacteriano , Doenças das Plantas/microbiologia , Xylella/genética , Brasil , Europa (Continente) , Espécies Introduzidas , Sequenciamento Completo do Genoma
7.
Phytopathology ; 110(5): 969-972, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32096699

RESUMO

Xylella fastidiosa is an economically important plant pathogenic bacterium of global importance associated, since 2013, with a devastating epidemic in olive trees in Italy. Since then, several outbreaks of this pathogen have been reported in other European member countries including Spain, France, and Portugal. In Spain, the three major subspecies (subsp. fastidiosa, multiplex, and pauca) of the bacterium have been detected in the Balearic Islands, but only subspecies multiplex in the mainland (Alicante). We present the first complete genome sequences of two Spanish strains: X. fastidiosa subsp. fastidiosa IVIA5235 from Mallorca and X. fastidiosa subsp. multiplex IVIA5901 from Alicante, using Oxford Nanopore and Illumina sequence reads, and two hybrid approaches for genome assembly. These completed genomes will provide a resource to better understand the biology of these X. fastidiosa strains.


Assuntos
Xylella , Europa (Continente) , França , Itália , Filogenia , Doenças das Plantas , Análise de Sequência de DNA , Espanha
8.
Plant Dis ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295789

RESUMO

Russian olive, also known as, Persian olive or oleaster (Elaeagnus angustifolia L.) is a species in the Elaeagnaceae family native to western and central Asia. In some orchards in Iran, intercropping Russian olive or Prunus trees with vegetables is a common practice. In 2018, about 130 ha of E. angustifolia orchards in Shahrood, Semnan Province, Iran showed branch wilting and dieback. Symptoms on affected trees started with yellowing of the lower leaves, followed by wilting and finally death of affected branches. Sections of stems indicated brown or black streaks in the vascular tissues under the bark. Isolations were made from discolored vascular tissues by surface-disinfesting small pieces of tissue with 0.5% sodium hypochlorite for 2 min, plating them onto potato dextrose agar amended with 25 mg/l streptomycin sulfate and incubated in the dark for 14 days at 25°C. Fungi consistently isolated from symptomatic tissues. Fungal isolates were identified as Verticillium dahliae Kleb. based on characteristics of verticillate conidiophores, hyaline, elliptical, single celled conidia measuring 4.7-6.0 × 2.3-3.4 µm (n = 100) and irregular, dark microsclerotia measuring 27-34 × 22-26 µm (n = 50) that developed after 14 days of growth at 25°C in the dark. The identification of two isolates was further confirmed by performing real-time PCR assay using a pair of specific primers for internal transcribed spacer (ITS) region of V. dahliae as previously described (Hiemstra et al. 2013). In addition, the molecular subdivision of isolates was further determined to discriminate D and ND molecular types (Keykhasaber 2017). According to molecular assays, isolates were identified as V. dahliae and grouped with ND types. The pathogenicity of isolates was evaluated by root-dipping one-year E. angustifolia seedlings (10 seedlings) into conidial suspensions of 1×107 cfu/ml. Inoculated plants were transplanted in pots containing autoclaved soil and maintained in a greenhouse at 25°C until symptoms appearance. Two seedlings were treated with sterile distilled water as controls. All inoculated seedlings started to show wilting symptoms similar to those present in naturally affected trees within 30 days after inoculation and died thereafter. Furthermore, V. dahliae was consistently isolated from symptomatic tissues. No symptoms were observed on the control plants. The pathogenicity test was repeated twice with similar results. To the best of our knowledge, this is the first report of Verticillium wilt on Russian olive trees in Iran. In Iran, Verticillium wilt is the cause of serious losses in many woody and herbaceous plants with economic importance including many trees belonging to the genus Prunus that are highly susceptible to the disease. In Shahrood (Semnan Province), most agricultural fields have a potato- or tomato- growing history. Verticillium wilt may become an important economic problem in many Russian olive and Prunus orchards in the future since their cultivation is expanding rapidly in many agricultural areas previously dedicated to tomato and potato crops, the majority of which are infested with V. dahliae. References Hiemstra, J. A., Korthals, G. W., Visser, J. H. M., Dalfsen, P. v., Sluis, B. J. v. d., and Smits, A. P. 2013. Control of Verticillium in tree nurseries through biological soil disinfestation. Pages 62-62 in: 11th International Verticillium Symposium, Georg-August-Universität,Göttingen, Germany, 5-8 May 2013, B. Koopmann and A. von Tiedemann, eds. DPG Spectrum Phytomedizin, Göttingen. Keykhasaber, M., Faino L., van den Berg, G.C.M., Hiemstra, J. A., Thomma, B. P. H. J. 2017. A robust method for discriminating defoliating and the non-defoliating pathotypes of V. dahliae. . In; Keykhasaber M. thesis 62-84. Sun, M., and Lin, Q. 2010. A revision of Elaeagnus L. (Elaeagnaceae) in mainland China. J. Systematics and Evolution 48:356-390.

9.
Phytopathology ; 109(2): 219-221, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30592693

RESUMO

An outbreak of Xylella fastidiosa subsp. multiplex sequence type ST6 was discovered in 2017 in mainland Spain affecting almond trees. Two cultured almond strains, "ESVL" and "IVIA5901," were subjected to high throughput sequencing and the draft genomes assembled. Phylogenetic analysis conclusively indicated they belong to the subspecies multiplex, and pairwise comparisons of the chromosomal genomes showed an average nucleotide identity higher than 99%. Interestingly, the two strains differ for the presence of the plasmids pXF64-Hb_ESVL and pUCLA-ESVL detected only in the ESVL strain. The availability of these draft genomes contribute to extend the European genomic sequence dataset, a first step toward setting new research to elucidate the pathway of introduction and spread of the numerous strains of this subspecies so far detected in Europe.


Assuntos
Doenças das Plantas/microbiologia , Prunus dulcis , Xylella , Europa (Continente) , Filogenia , Análise de Sequência de DNA , Espanha
11.
Phytopathology ; 107(7): 816-827, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28414633

RESUMO

Xylella fastidiosa is a plant-pathogenic bacterium recently introduced in Europe that is causing decline in olive trees in the South of Italy. Genetic studies have consistently shown that the bacterial genotype recovered from infected olive trees belongs to the sequence type ST53 within subspecies pauca. This genotype, ST53, has also been reported to occur in Costa Rica. The ancestry of ST53 was recently clarified, showing it contains alleles that are monophyletic with those of subsp. pauca in South America. To more robustly determine the phylogenetic placement of ST53 within X. fastidiosa, we performed a comparative analysis based on single nucleotide polymorphisms (SNPs) and the study of the pan-genome of the 27 currently public available whole genome sequences of X. fastidiosa. The resulting maximum-parsimony and maximum likelihood trees constructed using the SNPs and the pan-genome analysis are consistent with previously described X. fastidiosa taxonomy, distinguishing the subsp. fastidiosa, multiplex, pauca, sandyi, and morus. Within the subsp. pauca, the Italian and three Costa Rican isolates, all belonging to ST53, formed a compact phylotype in a clade divergent from the South American pauca isolates, also distinct from the recently described coffee isolate CFBP8072 imported into Europe from Ecuador. These findings were also supported by the gene characterization of a conjugative plasmid shared by all the four ST53 isolates. Furthermore, isolates of the ST53 clade possess an exclusive locus encoding a putative ATP-binding protein belonging to the family of histidine kinase-like ATPase gene, which is not present in isolates from the subspecies multiplex, sandyi, and pauca, but was detected in ST21 isolates of the subspecies fastidiosa from Costa Rica. The clustering and distinctiveness of the ST53 isolates supports the hypothesis of their common origin, and the limited genetic diversity among these isolates suggests this is an emerging clade within subsp. pauca.


Assuntos
Genoma Bacteriano , Estudo de Associação Genômica Ampla , Genótipo , Xylella/genética , Costa Rica , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Itália , Filogenia , Polimorfismo de Nucleotídeo Único
12.
Appl Environ Microbiol ; 81(10): 3405-18, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25769825

RESUMO

One of the main avocado diseases in southern Spain is white root rot caused by the fungus Rosellinia necatrix Prill. The use of organic soil amendments to enhance the suppressiveness of natural soil is an inviting approach that has successfully controlled other soilborne pathogens. This study tested the suppressive capacity of different organic amendments against R. necatrix and analyzed their effects on soil microbial communities and enzymatic activities. Two-year-old avocado trees were grown in soil treated with composted organic amendments and then used for inoculation assays. All of the organic treatments reduced disease development in comparison to unamended control soil, especially yard waste (YW) and almond shells (AS). The YW had a strong effect on microbial communities in bulk soil and produced larger population levels and diversity, higher hydrolytic activity and strong changes in the bacterial community composition of bulk soil, suggesting a mechanism of general suppression. Amendment with AS induced more subtle changes in bacterial community composition and specific enzymatic activities, with the strongest effects observed in the rhizosphere. Even if the effect was not strong, the changes caused by AS in bulk soil microbiota were related to the direct inhibition of R. necatrix by this amendment, most likely being connected to specific populations able to recolonize conducive soil after pasteurization. All of the organic amendments assayed in this study were able to suppress white root rot, although their suppressiveness appears to be mediated differentially.


Assuntos
Bactérias/isolamento & purificação , Agricultura Orgânica/métodos , Persea/microbiologia , Doenças das Plantas/microbiologia , Microbiologia do Solo , Xylariales/fisiologia , Bactérias/classificação , Bactérias/genética , Microbiota , Dados de Sequência Molecular , Agricultura Orgânica/instrumentação , Persea/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
13.
J Agric Food Chem ; 72(9): 4737-4746, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38390707

RESUMO

A methodology for the total and modulable synthesis of (4Z)-lachnophyllum lactone (1), on a gram scale, is reported for the first time. The present work started with the design of a retrosynthetic pathway for the target compound, with the key step identified in Pd-Cu bimetallic cascade cross-coupling cyclization. (4Z)-Lachnophyllum lactone (1) is an acetylenic furanone previously isolated, in a low amount, from the organic extract of the autotrophic weedConyza bonariensis. Tested against the stem parasitic weed Cuscuta campestris in a seedling growth bioassay, (4Z)-lachnophyllum lactone (1) showed almost 85% of inhibitory activity up to 0.3 mM in comparison with the control. At the same concentration, the compound displayed radicle growth inhibitory activity of the root parasitic weeds Orobanche minor and Phelipanche ramosa higher than 70 and 40%, respectively. Surprisingly, the compound showed a high percentage of inhibition, up to 0.1 mM, on C. bonariensis seed germination too. This versatile synthetic strategy was also used to obtain two further natural analogues, namely, (4E)-lachnophyllum lactone (8) and (4Z,8Z)-matricaria lactone (9), that showed, in most cases, the same inhibitory trend with slight differences, highlighting the importance of the stereochemistry and unsaturation of the side chain. Furthermore, all of the compounds showed antifungal activity at 1 mM reducing the mycelial growth of the olive pathogen Verticillium dahliae. The design and implementation of scalable and modulable total synthesis on a gram scale of acetylenic furanones allow the production of a large amount of these natural products, overcoming the limit imposed by isolation from natural sources. The results of the present study pave the way for the development of ecofriendly bioinspired pesticides with potential application in agrochemical practices as alternative to synthetic pesticides.


Assuntos
Alcaloides , Asteraceae , Orobanche , Praguicidas , Antifúngicos/farmacologia , Lactonas/química , Sementes , Plantas Daninhas , Agricultura , Alcaloides/farmacologia , Alcinos , Praguicidas/farmacologia , Germinação
15.
Phytopathology ; 103(5): 479-87, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23301814

RESUMO

Populations of Sclerotium rolfsii, the causal organism of Sclerotium root-rot on a wide range of hosts, can be placed into mycelial compatibility groups (MCGs). In this study, we evaluated three different molecular approaches to unequivocally identify each of 12 previously identified MCGs. These included restriction fragment length polymorphism (RFLP) patterns of the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (rDNA) and sequence analysis of two protein-coding genes: translation elongation factor 1α (EF1α) and RNA polymerase II subunit two (RPB2). A collection of 238 single-sclerotial isolates representing 12 MCGs of S. rolfsii were obtained from diseased sugar beet plants from Chile, Italy, Portugal, and Spain. ITS-RFLP analysis using four restriction enzymes (AluI, HpaII, RsaI, and MboI) displayed a low degree of variability among MCGs. Only three different restriction profiles were identified among S. rolfsii isolates, with no correlation to MCG or to geographic origin. Based on nucleotide polymorphisms, the RPB2 gene was more variable among MCGs compared with the EF1α gene. Thus, 10 of 12 MCGs could be characterized utilizing the RPB2 region only, while the EF1α region resolved 7 MCGs. However, the analysis of combined partial sequences of EF1α and RPB2 genes allowed discrimination among each of the 12 MCGs. All isolates belonging to the same MCG showed identical nucleotide sequences that differed by at least in one nucleotide from a different MCG. The consistency of our results to identify the MCG of a given S. rolfsii isolate using the combined sequences of EF1α and RPB2 genes was confirmed using blind trials. Our study demonstrates that sequence variation in the protein-coding genes EF1α and RPB2 may be exploited as a diagnostic tool for MCG typing in S. rolfsii as well as to identify previously undescribed MCGs.


Assuntos
Basidiomycota/genética , Variação Genética , Doenças das Plantas/microbiologia , Sequência de Bases , Basidiomycota/fisiologia , Beta vulgaris , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Polimerase II/genética , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Plants (Basel) ; 12(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36840260

RESUMO

Vascular pathogens are the causal agents of some of the most devastating plant diseases in the world, which can cause, under specific conditions, the destruction of entire crops. These plant pathogens activate a range of physiological and immune reactions in the host plant following infection, which may trigger the proliferation of a specific microbiome to combat them by, among others, inhibiting their growth and/or competing for space. Nowadays, it has been demonstrated that the plant microbiome can be modified by transplanting specific members of the microbiome, with exciting results for the control of plant diseases. However, its practical application in agriculture for the control of vascular plant pathogens is hampered by the limited knowledge of the plant endosphere, and, in particular, of the xylem niche. In this review, we present a comprehensive overview of how research on the plant microbiome has evolved during the last decades to unravel the factors and complex interactions that affect the associated microbial communities and their surrounding environment, focusing on the microbial communities inhabiting the xylem vessels of olive trees (Olea europaea subsp. europaea), the most ancient and important woody crop in the Mediterranean Basin. For that purpose, we have highlighted the role of xylem composition and its associated microorganisms in plants by describing the methodological approaches explored to study xylem microbiota, starting from the methods used to extract xylem microbial communities to their assessment by culture-dependent and next-generation sequencing approaches. Additionally, we have categorized some of the key biotic and abiotic factors, such as the host plant niche and genotype, the environment and the infection with vascular pathogens, that can be potential determinants to critically affect olive physiology and health status in a holobiont context (host and its associated organisms). Finally, we have outlined future directions and challenges for xylem microbiome studies based on the recent advances in molecular biology, focusing on metagenomics and culturomics, and bioinformatics network analysis. A better understanding of the xylem olive microbiome will contribute to facilitate the exploration and selection of specific keystone microorganisms that can live in close association with olives under a range of environmental/agronomic conditions. These microorganisms could be ideal targets for the design of microbial consortia that can be applied by endotherapy treatments to prevent or control diseases caused by vascular pathogens or modify the physiology and growth of olive trees.

17.
Am J Infect Control ; 51(9): 1038-1048, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36842712

RESUMO

INTRODUCTION: Hospital-acquired infections (HAIs) are a significant clinical and economic burden on health systems worldwide. Copper alloys have been certified by the US EPA as solid antimicrobial materials, but their effectiveness in reducing HAIs is not well established OBJECTIVES: This systematic review aimed to assess copper surfaces in situ efficacy in reducing health care's microbial burden compared to control surfaces. MATERIALS AND METHODS: A literature search was conducted using three electronic databases: Web of Science, PubMed, and Scopus, with the keywords "copper" and "surfaces" and "antimicrobial" and "antibacterial" and "infections." Studies from 2010 to 2022 were included. The quality of the studies was independently screened and assessed using the Newcastle Ottawa Scale. RESULTS: A total of 56 articles were screened, with 8 included in the review and 7, added from references. Two third of the studies report a significant reduction in the microbial burden on copper objects compared to control objects. The 2 studies with the highest scores on NOS evaluation indicated that using copper or copper alloys in healthcare settings can effectively decrease the number of bacterial contaminations on touch surfaces. CONCLUSIONS: The results suggest the potential effectiveness of copper as a preventive tool in healthcare facilities, but further studies and longer trials are needed to establish a relationship between copper and reduced nosocomial infections.


Assuntos
Anti-Infecciosos , Infecção Hospitalar , Humanos , Cobre , Instalações de Saúde , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/microbiologia , Ligas , Atenção à Saúde
18.
Plants (Basel) ; 11(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35631745

RESUMO

Understanding the unique and unexplored microbial environment of xylem sap is starting to be of relevant importance for plant health, as it could include microbes that may protect plants against xylem-limited pathogens, such as Verticillium dahliae and Xylella fastidiosa. In this study, we evaluated the effects that the method for extracting the xylem bacterial communities, the plant age and the PCR primers may have on characterizing the xylem-bacterial-community composition by using an NGS approach. Xylem sap was extracted from xylem vessels by using a Scholander pressure chamber, or by macerating wood shavings that were obtained from xylem tissues by using branches from 10-year-old olive trees, or the entire canopy of 1-year-old olive plantlets. Additionally, we compared four different PCR-primer pairs that target 16S rRNA for their efficacy to avoid the coamplification of mitochondria and chloroplast 16S rRNA, as this represents an important drawback in metabarcoding studies. The highest amplifications in the mitochondria and chloroplast reads were obtained when using xylem woody chips with the PCR1-799F/1062R (76.05%) and PCR3-967F/1391R (99.96%) primer pairs. To the contrary, the PCR2-799F/1115R and PCR4-799F/1193R primer pairs showed the lowest mitochondria 16S rRNA amplification (<27.48%), no chloroplast sequences and the highest numbers of bacterial OTUs identified (i.e., 254 and 266, respectively). Interestingly, only 73 out of 172 and 46 out of 181 genera were shared between the xylem sap and woody chips after amplification with PCR2 or PCR4 primers, respectively, which indicates a strong bias of the bacterial-community description, depending on the primers used. Globally, the most abundant bacterial genera (>60% of reads) included Anoxybacillus, Cutibacterium, Pseudomonas, Spirosoma, Methylobacterium-Methylorubrum and Sphingomonas; however, their relative importance varied, depending on the matrix that was used for the DNA extraction and the primer pairs that were used, with the lowest effect due to plant age. These results will help to optimize the analysis of xylem-inhabiting bacteria, depending on whether whole xylematic tissue or xylem sap is used for the DNA extraction. More importantly, it will help to better understand the driving and modifying factors that shape the olive-xylem-bacterial-community composition.

19.
Plants (Basel) ; 11(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35736713

RESUMO

Xylella fastidiosa (Xf) is a phytopathogenic bacterium with a repertoire of self-replicating genetic elements, including plasmids, pathogenicity islands, and prophages. These elements provide potential avenues for horizontal gene transfer both within and between species and have the ability to confer new virulence traits, including the ability to colonize new host plants. However, they can also serve as a 'footprint' to type plasmid-bearing strains. Genome sequencing of several strains of Xf subsp. fastidiosa sequence type (ST) 1 from Mallorca Island, Spain, revealed the presence of a 38 kb plasmid (pXFAS_5235). In this study, we developed a PCR-based typing approach using primers targeting the traC gene to determine the presence of pXFAS_5235 plasmid or other plasmids carrying this gene in a world-wide collection of 65 strains X. fastidiosa from different subspecies and STs or in 226 plant samples naturally infected by the bacterium obtained from the different outbreaks of Xf in Spain. The traC gene was amplified only in the plant samples obtained from Mallorca Island infected by Xf subsp. fastidiosa ST1 and from all Spanish strains belonging to this ST. Maximum-likelihood phylogenetic tree of traC revealed a close relatedness among Spanish and Californian strains carrying similar plasmids. Our results confirm previous studies, which suggested that a single introduction event of Xf subsp. fastidiosa ST1 occurred in the Balearic Islands. Further studies on the presence and role of plasmids in Xf strains belonging to the same or different subspecies and STs can provide important information in studies of epidemiology, ecology, and evolution of this plant pathogen.

20.
Plants (Basel) ; 11(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35956549

RESUMO

Over the last few decades, a growing incidence of Banana Wilt (BW) has been detected in the banana-producing areas of the central zone of Venezuela. This disease is thought to be caused by a fungal−bacterial complex, coupled with the influence of specific soil properties. However, until now, there was no consensus on the soil characteristics associated with a high incidence of BW. The objective of this study was to identify the soil properties potentially associated with BW incidence, using supervised methods. The soil samples associated with banana plant lots in Venezuela, showing low (n = 29) and high (n = 49) incidence of BW, were collected during two consecutive years (2016 and 2017). On those soils, sixteen soil variables, including the percentage of sand, silt and clay, pH, electrical conductivity, organic matter, available contents of K, Na, Mg, Ca, Mn, Fe, Zn, Cu, S and P, were determined. The Wilcoxon test identified the occurrence of significant differences in the soil variables between the two groups of BW incidence. In addition, Orthogonal Least Squares Discriminant Analysis (OPLS-DA) and the Random Forest (RF) algorithm was applied to find soil variables capable of distinguishing banana lots showing high or low BW incidence. The OPLS-DA model showed a proper fitting of the data (R2Y: 0.61, p value < 0.01), and exhibited good predictive power (Q2: 0.50, p value < 0.01). The analysis of the Receiver Operating Characteristics (ROC) curves by RF revealed that the combination of Zn, Fe, Ca, K, Mn and Clay was able to accurately differentiate 84.1% of the banana lots with a sensitivity of 89.80% and a specificity of 72.40%. So far, this is the first study that identifies these six soil variables as possible new indicators associated with BW incidence in soils of lacustrine origin in Venezuela.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA