Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Neurosci ; 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35868863

RESUMO

The Drosophila connectome project aims to map the synaptic connectivity of entire larval and adult fly neural networks, which is essential for understanding nervous system development and function. So far, the project has produced an impressive amount of electron microscopy data that has facilitated reconstructions of specific synapses, including many in the larval locomotor circuit. While this breakthrough represents a technical tour-de-force, the data remain under-utilised, partly due to a lack of functional validation of reconstructions. Attempts to validate connectivity posited by the connectome project, have mostly relied on behavioural assays and/or GRASP or GCaMP imaging. While these techniques are useful, they have limited spatial or temporal resolution. Electrophysiological assays of synaptic connectivity overcome these limitations. Here, we combine patch clamp recordings with optogenetic stimulation in male and female larvae, to test synaptic connectivity proposed by connectome reconstructions. Specifically, we use multiple driver lines to confirm that several connections between premotor interneurons and the anterior corner cell (aCC) motoneuron are, as the connectome project suggests, monosynaptic. In contrast, our results also show that conclusions based on GRASP imaging may provide false positive results regarding connectivity between cells. We also present a novel imaging tool, based on the same technology as our electrophysiology, as a favourable alternative to GRASP. Finally, of eight Gal4 lines tested, five are reliably expressed in the premotors they are targeted to. Thus, our work highlights the need to confirm functional synaptic connectivity, driver line specificity, and use of appropriate genetic tools to support connectome projects.SIGNIFICANCE STATEMENTThe Drosophila connectome project aims to provide a complete description of connectivity between neurons in an organism that presents experimental advantages over other models. It has reconstructed over 80 percent of the fly larva's synaptic connections by manual identification of anatomical landmarks present in serial section transmission electron microscopy (ssTEM) volumes of the larval CNS. We use a highly reliable electrophysiological approach to verify these connections, so provide useful insight into the accuracy of work based on ssTEM. We also present a novel imaging tool for validating excitatory monosynaptic connections between cells, and show that several genetic driver lines designed to target neurons of the larval connectome exhibit non-specific and/or unreliable expression.

3.
Development ; 143(7): 1170-81, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893340

RESUMO

Astrocytes are crucial in the formation, fine-tuning, function and plasticity of neural circuits in the central nervous system. However, important questions remain about the mechanisms instructing astrocyte cell fate. We have studied astrogenesis in the ventral nerve cord of Drosophila larvae, where astrocytes exhibit remarkable morphological and molecular similarities to those in mammals. We reveal the births of larval astrocytes from a multipotent glial lineage, their allocation to reproducible positions, and their deployment of ramified arbors to cover specific neuropil territories to form a stereotyped astroglial map. Finally, we unraveled a molecular pathway for astrocyte differentiation in which the Ets protein Pointed and the Notch signaling pathway are required for astrogenesis; however, only Notch is sufficient to direct non-astrocytic progenitors toward astrocytic fate. We found that Prospero is a key effector of Notch in this process. Our data identify an instructive astrogenic program that acts as a binary switch to distinguish astrocytes from other glial cells.


Assuntos
Astrócitos/citologia , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Proteínas do Tecido Nervoso/genética , Neurópilo/citologia , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/genética , Receptores Notch/genética , Fatores de Transcrição/genética , Animais , Astrócitos/metabolismo , Linhagem da Célula/fisiologia , Sistema Nervoso Central/embriologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neuroglia/citologia , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo
4.
Development ; 141(20): 3994-4005, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25294943

RESUMO

Although we now have a wealth of information on the transcription patterns of all the genes in the Drosophila genome, much less is known about the properties of the encoded proteins. To provide information on the expression patterns and subcellular localisations of many proteins in parallel, we have performed a large-scale protein trap screen using a hybrid piggyBac vector carrying an artificial exon encoding yellow fluorescent protein (YFP) and protein affinity tags. From screening 41 million embryos, we recovered 616 verified independent YFP-positive lines representing protein traps in 374 genes, two-thirds of which had not been tagged in previous P element protein trap screens. Over 20 different research groups then characterized the expression patterns of the tagged proteins in a variety of tissues and at several developmental stages. In parallel, we purified many of the tagged proteins from embryos using the affinity tags and identified co-purifying proteins by mass spectrometry. The fly stocks are publicly available through the Kyoto Drosophila Genetics Resource Center. All our data are available via an open access database (Flannotator), which provides comprehensive information on the expression patterns, subcellular localisations and in vivo interaction partners of the trapped proteins. Our resource substantially increases the number of available protein traps in Drosophila and identifies new markers for cellular organelles and structures.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/metabolismo , Animais , Proteínas de Bactérias/química , Cruzamentos Genéticos , Éxons , Feminino , Técnicas Genéticas , Genoma , Proteínas Luminescentes/química , Masculino , Ovário/metabolismo , Fatores Sexuais , Testículo/metabolismo , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 110(40): E3878-87, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24043825

RESUMO

As animals grow, their nervous systems also increase in size. How growth in the central nervous system is regulated and its functional consequences are incompletely understood. We explored these questions, using the larval Drosophila locomotor system as a model. In the periphery, at neuromuscular junctions, motoneurons are known to enlarge their presynaptic axon terminals in size and strength, thereby compensating for reductions in muscle excitability that are associated with increases in muscle size. Here, we studied how motoneurons change in the central nervous system during periods of animal growth. We find that within the central nervous system motoneurons also enlarge their postsynaptic dendritic arbors, by the net addition of branches, and that these scale with overall animal size. This dendritic growth is gated on a cell-by-cell basis by a specific isoform of the steroid hormone receptor ecdysone receptor-B2, for which functions have thus far remained elusive. The dendritic growth is accompanied by synaptic strengthening and results in increased neuronal activity. Electrical properties of these neurons, however, are independent of ecdysone receptor-B2 regulation. We propose that these structural dendritic changes in the central nervous system, which regulate neuronal activity, constitute an additional part of the adaptive response of the locomotor system to increases in body and muscle size as the animal grows.


Assuntos
Adaptação Biológica/fisiologia , Tamanho Corporal/fisiologia , Sistema Nervoso Central/crescimento & desenvolvimento , Dendritos/fisiologia , Drosophila/fisiologia , Locomoção/fisiologia , Neurônios Motores/citologia , Análise de Variância , Animais , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Receptores de Esteroides/metabolismo , Estatísticas não Paramétricas
6.
PLoS Genet ; 9(4): e1003452, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23637622

RESUMO

Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn). The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.


Assuntos
Neurônios Receptores Olfatórios , Neurônios Serotoninérgicos , Animais , Odorantes , Condutos Olfatórios , Células Receptoras Sensoriais , Serotonina
7.
Elife ; 122024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193543

RESUMO

Developing neural circuits are influenced by activity and are especially sensitive to changes in activity during critical periods (CPs) of development. Changes occurring during a CP often become 'locked in' so that they affect the mature network. Indeed, several neurodevelopmental disorders have been linked to excessive activity during such periods. It is, therefore, important to identify those aspects of neural circuit development that are influenced by neural activity during a CP. In this study, we take advantage of the genetic tractability of Drosophila to show that activity perturbation during an embryonic CP permanently alters properties of the locomotor circuit. Specific changes we identify include increased synchronicity of motoneuron activity and greater strengthening of excitatory over inhibitory synaptic drive to motoneurons. These changes are sufficient to reduce network robustness, evidenced by increased sensitivity to induced seizure. We also show that we can rescue these changes when increased activity is mitigated by inhibition provided by mechanosensory neurons. Similarly, we demonstrate a dose-dependent relationship between inhibition experienced during the CP and the extent to which it is possible to rescue the hyperexcitable phenotype characteristic of the parabss mutation. This suggests that developing circuits must be exposed to a properly balanced sum of excitation and inhibition during the CP to achieve normal mature network function. Our results, therefore, provide novel insight into how activity during a CP shapes specific elements of a circuit, and how activity during this period is integrated to tune neural circuits to the environment in which they will likely function.


Assuntos
Drosophila , Transtornos do Neurodesenvolvimento , Animais , Inibição Psicológica , Neurônios Motores , Mutação
8.
Biochem J ; 444(3): 487-95, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22435640

RESUMO

Drosophila have emerged as a model system to study mammalian neurodegenerative diseases. In the present study we have generated Drosophila transgenic for ovine PrP (prion protein) to begin to establish an invertebrate model of ovine prion disease. We generated Drosophila transgenic for polymorphic variants of ovine PrP by PhiC31 site-specific germ-line transformation under expression control by the bi-partite GAL4/UAS (upstream activating sequence) system. Site-specific transgene insertion in the fly genome allowed us to test the hypothesis that single amino acid codon changes in ovine PrP modulate prion protein levels and the phenotype of the fly when expressed in the Drosophila nervous system. The Arg(154) ovine PrP variants showed higher levels of PrP expression in neuronal cell bodies and insoluble PrP conformer than did His(154) variants. High levels of ovine PrP expression in Drosophila were associated with phenotypic effects, including reduced locomotor activity and decreased survival. Significantly, the present study highlights a critical role for helix-1 in the formation of distinct conformers of ovine PrP, since expression of His(154) variants were associated with decreased survival in the absence of high levels of PrP accumulation. Collectively, the present study shows that variants of the ovine PrP are associated with different spontaneous detrimental effects in ovine PrP transgenic Drosophila.


Assuntos
Atividade Motora/genética , Príons/biossíntese , Príons/genética , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Drosophila/genética , Feminino , Estrutura Secundária de Proteína/genética , Carneiro Doméstico , Taxa de Sobrevida/tendências
9.
Proc Natl Acad Sci U S A ; 107(47): 20553-8, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21059961

RESUMO

In recent years, Drosophila melanogaster has emerged as a powerful model for neuronal circuit development, pathology, and function. A major impediment to these studies has been the lack of a genetically encoded, specific, universal, and phenotypically neutral marker of the somatodendritic compartment. We have developed such a marker and show that it is effective and specific in all neuronal populations tested in the peripheral and central nervous system. The marker, which we name DenMark (Dendritic Marker), is a hybrid protein of the mouse protein ICAM5/Telencephalin and the red fluorescent protein mCherry. We show that DenMark is a powerful tool for revealing novel aspects of the neuroanatomy of developing dendrites, identifying previously unknown dendritic arbors, and elucidating neuronal connectivity.


Assuntos
Dendritos/genética , Drosophila melanogaster/genética , Marcadores Genéticos/genética , Proteínas Luminescentes/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Proteínas Recombinantes de Fusão/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Eletrorretinografia , Hipocampo/citologia , Imuno-Histoquímica , Proteínas Luminescentes/genética , Glicoproteínas de Membrana/genética , Camundongos , Microscopia Confocal , Proteínas do Tecido Nervoso/genética , Proteínas Recombinantes de Fusão/genética , Proteína Vermelha Fluorescente
10.
Curr Opin Cell Biol ; 17(6): 690-6, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16226445

RESUMO

The dendritic trees of different neuronal types display an astonishing diversity in structure and function. How this diversity is generated remains incompletely understood. However, recent studies have revealed some of the underlying mechanisms by which intrinsic programs of cell-type specification and extrinsic factors exert their effects on the dendritic cytoskeleton to regulate patterns of growth and branching.


Assuntos
Dendritos/fisiologia , Elementos Reguladores de Transcrição/fisiologia , Animais , Dendritos/classificação , Dendritos/genética , Humanos , RNA Mensageiro/biossíntese , Fatores de Tempo
11.
PLoS Biol ; 7(9): e1000200, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19771146

RESUMO

A fundamental strategy for organising connections in the nervous system is the formation of neural maps. Map formation has been most intensively studied in sensory systems where the central arrangement of axon terminals reflects the distribution of sensory neuron cell bodies in the periphery or the sensory modality. This straightforward link between anatomy and function has facilitated tremendous progress in identifying cellular and molecular mechanisms that underpin map development. Much less is known about the way in which networks that underlie locomotion are organised. We recently showed that in the Drosophila embryo, dendrites of motorneurons form a neural map, being arranged topographically in the antero-posterior axis to represent the distribution of their target muscles in the periphery. However, the way in which a dendritic myotopic map forms has not been resolved and whether postsynaptic dendrites are involved in establishing sets of connections has been relatively little explored. In this study, we show that motorneurons also form a myotopic map in a second neuropile axis, with respect to the ventral midline, and they achieve this by targeting their dendrites to distinct medio-lateral territories. We demonstrate that this map is "hard-wired"; that is, it forms in the absence of excitatory synaptic inputs or when presynaptic terminals have been displaced. We show that the midline signalling systems Slit/Robo and Netrin/Frazzled are the main molecular mechanisms that underlie dendritic targeting with respect to the midline. Robo and Frazzled are required cell-autonomously in motorneurons and the balance of their opposite actions determines the dendritic target territory. A quantitative analysis shows that dendritic morphology emerges as guidance cue receptors determine the distribution of the available dendrites, whose total length and branching frequency are specified by other cell intrinsic programmes. Our results suggest that the formation of dendritic myotopic maps in response to midline guidance cues may be a conserved strategy for organising connections in motor systems. We further propose that sets of connections may be specified, at least to a degree, by global patterning systems that deliver pre- and postsynaptic partner terminals to common "meeting regions."


Assuntos
Dendritos/metabolismo , Neurônios Motores/citologia , Músculos/inervação , Transdução de Sinais , Animais , Dendritos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Microscopia Confocal , Neurônios Motores/metabolismo , Músculos/embriologia , Músculos/fisiologia , Fatores de Crescimento Neural/metabolismo , Rede Nervosa , Proteínas do Tecido Nervoso/metabolismo , Receptores de Netrina , Netrinas , Neurópilo/citologia , Neurópilo/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Receptores de Superfície Celular/metabolismo , Receptores Imunológicos/metabolismo , Transmissão Sináptica , Proteínas Roundabout
12.
Front Physiol ; 13: 1073307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531164

RESUMO

Critical periods are phases of heightened plasticity that occur during the development of neural networks. Beginning with pioneering work of Hubel and Wiesel, which identified a critical period for the formation of ocular dominance in mammalian visual network connectivity, critical periods have been identified for many circuits, both sensory and motor, and across phyla, suggesting a universal phenomenon. However, a key unanswered question remains why these forms of plasticity are restricted to specific developmental periods rather than being continuously present. The consequence of this temporal restriction is that activity perturbations during critical periods can have lasting and significant functional consequences for mature neural networks. From a developmental perspective, critical period plasticity might enable reproducibly robust network function to emerge from ensembles of cells, whose properties are necessarily variable and fluctuating. Critical periods also offer significant clinical opportunity. Imposed activity perturbation during these periods has shown remarkable beneficial outcomes in a range of animal models of neurological disease including epilepsy. In this review, we spotlight the recent identification of a locomotor critical period in Drosophila larva and describe how studying this model organism, because of its simplified nervous system and an almost complete wired connectome, offers an attractive prospect of understanding how activity during a critical period impacts a neuronal network.

13.
Front Cell Neurosci ; 16: 1106593, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713781

RESUMO

Neurons respond to changes in the levels of activity they experience in a variety of ways, including structural changes at pre- and postsynaptic terminals. An essential plasticity signal required for such activity-regulated structural adjustments are reactive oxygen species (ROS). To identify sources of activity-regulated ROS required for structural plasticity in vivo we used the Drosophila larval neuromuscular junction as a highly tractable experimental model system. For adjustments of presynaptic motor terminals, we found a requirement for both NADPH oxidases, Nox and dual oxidase (Duox), that are encoded in the Drosophila genome. This contrasts with the postsynaptic dendrites from which Nox is excluded. NADPH oxidases generate ROS to the extracellular space. Here, we show that two aquaporins, Bib and Drip, are necessary ROS conduits in the presynaptic motoneuron for activity regulated, NADPH oxidase dependent changes in presynaptic motoneuron terminal growth. Our data further suggest that different aspects of neuronal activity-regulated structural changes might be regulated by different ROS sources: changes in bouton number require both NADPH oxidases, while activity-regulated changes in the number of active zones might be modulated by other sources of ROS. Overall, our results show NADPH oxidases as important enzymes for mediating activity-regulated plasticity adjustments in neurons.

14.
PLoS Biol ; 6(10): e260, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-18959482

RESUMO

As the nervous system develops, there is an inherent variability in the connections formed between differentiating neurons. Despite this variability, neural circuits form that are functional and remarkably robust. One way in which neurons deal with variability in their inputs is through compensatory, homeostatic changes in their electrical properties. Here, we show that neurons also make compensatory adjustments to their structure. We analysed the development of dendrites on an identified central neuron (aCC) in the late Drosophila embryo at the stage when it receives its first connections and first becomes electrically active. At the same time, we charted the distribution of presynaptic sites on the developing postsynaptic arbor. Genetic manipulations of the presynaptic partners demonstrate that the postsynaptic dendritic arbor adjusts its growth to compensate for changes in the activity and density of synaptic sites. Blocking the synthesis or evoked release of presynaptic neurotransmitter results in greater dendritic extension. Conversely, an increase in the density of presynaptic release sites induces a reduction in the extent of the dendritic arbor. These growth adjustments occur locally in the arbor and are the result of the promotion or inhibition of growth of neurites in the proximity of presynaptic sites. We provide evidence that suggest a role for the postsynaptic activity state of protein kinase A in mediating this structural adjustment, which modifies dendritic growth in response to synaptic activity. These findings suggest that the dendritic arbor, at least during early stages of connectivity, behaves as a homeostatic device that adjusts its size and geometry to the level and the distribution of input received. The growing arbor thus counterbalances naturally occurring variations in synaptic density and activity so as to ensure that an appropriate level of input is achieved.


Assuntos
Dendritos/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/genética , Dendritos/metabolismo , Drosophila , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Interneurônios/citologia , Interneurônios/metabolismo , Interneurônios/fisiologia , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/metabolismo , Sinapses/fisiologia
15.
Curr Biol ; 31(23): R1513-R1515, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34875237

RESUMO

Developing nervous systems exhibit spontaneous activity. Two new studies identify the instructive influence such activity has on the formation of functionally appropriate circuits.


Assuntos
Rede Nervosa , Vias Visuais , Rede Nervosa/fisiologia , Neurônios/fisiologia
16.
Sci Rep ; 11(1): 20286, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645891

RESUMO

The emergence of coordinated network function during nervous system development is often associated with critical periods. These phases are sensitive to activity perturbations during, but not outside, of the critical period, that can lead to permanently altered network function for reasons that are not well understood. In particular, the mechanisms that transduce neuronal activity to regulating changes in neuronal physiology or structure are not known. Here, we take advantage of a recently identified invertebrate model for studying critical periods, the Drosophila larval locomotor system. Manipulation of neuronal activity during this critical period is sufficient to increase synaptic excitation and to permanently leave the locomotor network prone to induced seizures. Using genetics and pharmacological manipulations, we identify nitric oxide (NO)-signaling as a key mediator of activity. Transiently increasing or decreasing NO-signaling during the critical period mimics the effects of activity manipulations, causing the same lasting changes in synaptic transmission and susceptibility to seizure induction. Moreover, the effects of increased activity on the developing network are suppressed by concomitant reduction in NO-signaling and enhanced by additional NO-signaling. These data identify NO signaling as a downstream effector, providing new mechanistic insight into how activity during a critical period tunes a developing network.


Assuntos
Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/metabolismo , Óxido Nítrico/metabolismo , Transmissão Sináptica , Animais , Eletrofisiologia , Feminino , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Optogenética , Transdução de Sinais
17.
Front Cell Neurosci ; 15: 641802, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290589

RESUMO

Neurons utilize plasticity of dendritic arbors as part of a larger suite of adaptive plasticity mechanisms. This explicitly manifests with motoneurons in the Drosophila embryo and larva, where dendritic arbors are exclusively postsynaptic and are used as homeostatic devices, compensating for changes in synaptic input through adapting their growth and connectivity. We recently identified reactive oxygen species (ROS) as novel plasticity signals instrumental in this form of dendritic adjustment. ROS correlate with levels of neuronal activity and negatively regulate dendritic arbor size. Here, we investigated NADPH oxidases as potential sources of such activity-regulated ROS and implicate Dual Oxidase (but not Nox), which generates hydrogen peroxide extracellularly. We further show that the aquaporins Bib and Drip, but not Prip, are required for activity-regulated ROS-mediated adjustments of dendritic arbor size in motoneurons. These results suggest a model whereby neuronal activity leads to activation of the NADPH oxidase Dual Oxidase, which generates hydrogen peroxide at the extracellular face; aquaporins might then act as conduits that are necessary for these extracellular ROS to be channeled back into the cell where they negatively regulate dendritic arbor size.

18.
Neuron ; 109(1): 105-122.e7, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33120017

RESUMO

The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.


Assuntos
Conectoma/métodos , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Interneurônios/química , Rede Nervosa/química , Optogenética/métodos , Sinapses/química , Sinapses/genética
19.
Curr Biol ; 30(16): 3167-3182.e4, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32619476

RESUMO

Animals exhibit innate and learned preferences for temperature and humidity-conditions critical for their survival and reproduction. Leveraging a whole-brain electron microscopy volume, we studied the adult Drosophila melanogaster circuitry associated with antennal thermo- and hygrosensory neurons. We have identified two new target glomeruli in the antennal lobe, in addition to the five known ones, and the ventroposterior projection neurons (VP PNs) that relay thermo- and hygrosensory information to higher brain centers, including the mushroom body and lateral horn, seats of learned and innate behavior. We present the first connectome of a thermo- and hygrosensory neuropil, the lateral accessory calyx (lACA), by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. A few mushroom body-intrinsic neurons solely receive thermosensory input from the lACA, while most receive additional olfactory and thermo- and/or hygrosensory PN inputs. Furthermore, several classes of lACA-associated neurons form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a hub for thermo- and hygrosensory circuitry. For example, DN1a neurons link thermosensory PNs in the lACA to the circadian clock via the accessory medulla. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron targeted by dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor circuits. These data provide a comprehensive first- and second-order layer analysis of Drosophila thermo- and hygrosensory systems and an initial survey of third-order neurons that could directly modulate behavior.


Assuntos
Conectoma , Drosophila melanogaster/fisiologia , Neurônios/metabolismo , Neurópilo/metabolismo , Células Receptoras Sensoriais/metabolismo , Sinapses/fisiologia , Termorreceptores/metabolismo , Animais , Feminino , Neurônios/citologia , Condutos Olfatórios
20.
Neuron ; 37(1): 41-51, 2003 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-12526771

RESUMO

Drosophila sensory neurons form distinctive terminal branch patterns in the developing neuropile of the embryonic central nervous system. In this paper we make a genetic analysis of factors regulating arbor position. We show that mediolateral position is determined in a binary fashion by expression (chordotonal neurons) or nonexpression (multidendritic neurons) of the Robo3 receptor for the midline repellent Slit. Robo3 expression is one of a suite of chordotonal neuron properties that depend on expression of the proneural gene atonal. Different features of terminal branches are separately regulated: an arbor can be shifted mediolaterally without affecting its dorsoventral location, and the distinctive remodeling of one arbor continues as normal despite this arbor shifting to an abnormal position in the neuropile.


Assuntos
Axônios/ultraestrutura , Diferenciação Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Sistema Nervoso/embriologia , Receptores Imunológicos/metabolismo , Animais , Axônios/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Comunicação Celular/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Feminino , Lateralidade Funcional/genética , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/crescimento & desenvolvimento , Malformações do Sistema Nervoso/genética , Plasticidade Neuronal/genética , Neurônios Aferentes/citologia , Neurônios Aferentes/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Receptores Imunológicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA