Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36982478

RESUMO

Neuroinflammation is a pathophysiological condition associated with damage to the nervous system. Maternal immune activation and early immune activation have adverse effects on the development of the nervous system and cognitive functions. Neuroinflammation during adulthood leads to neurodegenerative diseases. Lipopolysaccharide (LPS) is used in preclinical research to mimic neurotoxic effects leading to systemic inflammation. Environmental enrichment (EE) has been reported to cause a wide range of beneficial changes in the brain. Based on the above, the purpose of the present review is to describe the effects of exposure to EE paradigms in counteracting LPS-induced neuroinflammation throughout the lifespan. Up to October 2022, a methodical search of studies in the literature, using the PubMed and Scopus databases, was performed, focusing on exposure to LPS, as an inflammatory mediator, and to EE paradigms in preclinical murine models. On the basis of the inclusion criteria, 22 articles were considered and analyzed in the present review. EE exerts sex- and age-dependent neuroprotective and therapeutic effects in animals exposed to the neurotoxic action of LPS. EE's beneficial effects are present throughout the various ages of life. A healthy lifestyle and stimulating environments are essential to counteract the damages induced by neurotoxic exposure to LPS.


Assuntos
Lipopolissacarídeos , Doenças Neuroinflamatórias , Camundongos , Animais , Lipopolissacarídeos/toxicidade , Inflamação , Cognição , Encéfalo
2.
Int J Mol Sci ; 24(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36982996

RESUMO

Alzheimer's disease (AD) is a rapidly growing epidemic with a heavy social and economic burden. Evidence suggests that systemic inflammation, dysregulation of the immune response and the resulting neuroinflammation and neurodegeneration play a significant role in AD pathogenesis. Currently, given that there is no fully convincing cure for AD, the interest in lifestyle factors (such as diet), which potentially delay onset and reduce the severity of symptoms, is increasing. This review is aimed at summarizing the effects of dietary supplementation on cognitive decline, neuroinflammation and oxidative stress in AD-like animal models with a focus on neuroinflammation induced by lipopolysaccharide (LPS) injection, which mimics systemic inflammation in animals. The compounds reviewed include curcumin, krill oil, chicoric acid, plasmalogens, lycopene, tryptophan-related dipeptides, hesperetin and selenium peptides. Despite the heterogeneity of these compounds, there is a strong consensus on their counteracting action on LPS-induced cognitive deficits and neuroinflammatory responses in rodents by modulating cell-signaling processes, such as the NF-κB pathway. Overall, dietary interventions could represent an important resource to oppose AD due to their influence in neuroprotection and immune regulation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Doença de Alzheimer/metabolismo , Lipopolissacarídeos/farmacologia , Doenças Neuroinflamatórias , Estresse Oxidativo , Inflamação , Disfunção Cognitiva/prevenção & controle , Dieta , Modelos Animais , Modelos Animais de Doenças
4.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143275

RESUMO

As major components of neuronal membranes, omega-3 polyunsaturated fatty acids (n-3 PUFA) exhibit a wide range of regulatory functions. Recent human and animal studies indicate that n-3 PUFA may exert beneficial effects on aging processes. Here we analyzed the neuroprotective influence of n-3 PUFA supplementation on behavioral deficits, hippocampal neurogenesis, volume loss, and astrogliosis in aged mice that underwent a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valid model to mimic a key component of the cognitive deficits associated with dementia. Aged mice were supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks and then cholinergically depleted with mu-p75-saporin immunotoxin. Two weeks after lesioning, mice were behaviorally tested to assess anxious, motivational, social, mnesic, and depressive-like behaviors. Subsequently, morphological and biochemical analyses were performed. In lesioned aged mice the n-3 PUFA pre-treatment preserved explorative skills and associative retention memory, enhanced neurogenesis in the dentate gyrus, and reduced volume and VAChT levels loss as well as astrogliosis in hippocampus. The present findings demonstrating that n-3 PUFA supplementation before cholinergic depletion can counteract behavioral deficits and hippocampal neurodegeneration in aged mice advance a low-cost, non-invasive preventive tool to enhance life quality during aging.


Assuntos
Neurônios Colinérgicos/citologia , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Gliose/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Prosencéfalo/citologia , Acetilcolina/metabolismo , Animais , Comportamento Animal , Colina O-Acetiltransferase/metabolismo , Neurônios Colinérgicos/patologia , Transtornos Cognitivos/prevenção & controle , Densitometria , Comportamento Alimentar , Feminino , Hipocampo/citologia , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Azeite de Oliva/administração & dosagem , Qualidade de Vida , Saporinas , Comportamento Social
5.
J Alzheimers Dis ; 98(4): 1181-1197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38552114

RESUMO

 Evidence in the literature indicates that aerobic physical activity may have a protective role in aging pathologies. However, it has not been clarified whether different types of aerobic exercise produce different effects. In particular, these potential differences have not been explored in patients with Alzheimer's disease (AD). The present narrative review has the specific aim of evaluating whether land (walking/running) and water (swimming) aerobic activities exert different effects on cognitive functions and neural correlates in AD patients. In particular, the investigation is carried out by comparing the evidence provided from studies on AD animal models and on patients. On the whole, we ascertained that both human and animal studies documented beneficial effects of land and water aerobic exercise on cognition in AD. Also, the modulation of numerous biological processes is documented in association with structural modifications. Remarkably, we found that aerobic activity appears to improve cognition per se, independently from the specific kind of exercise performed. Aerobic exercise promotes brain functioning through the secretion of molecular factors from skeletal muscles and liver. These molecular factors stimulate neuroplasticity, reduce neuroinflammation, and inhibit neurodegenerative processes leading to amyloid-ß accumulation. Additionally, aerobic exercise improves mitochondrial activity, reducing oxidative stress and enhancing ATP production. Aerobic activities protect against AD, but implementing exercise protocols for patients is challenging. We suggest that health policies and specialized institutions should direct increasing attention on aerobic activity as lifestyle modifiable factor for successful aging and age-related conditions.


Assuntos
Doença de Alzheimer , Animais , Humanos , Doença de Alzheimer/patologia , Cognição , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Peptídeos beta-Amiloides
6.
Biomolecules ; 12(5)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35625595

RESUMO

Palmitoylethanolamide (PEA) stands out among endogenous lipid mediators for its neuroprotective, anti-inflammatory, and analgesic functions. PEA belonging to the N-acetylanolamine class of phospholipids was first isolated from soy lecithin, egg yolk, and peanut flour. It is currently used for the treatment of different types of neuropathic pain, such as fibromyalgia, osteoarthritis, carpal tunnel syndrome, and many other conditions. The properties of PEA, especially of its micronized or ultra-micronized forms maximizing bioavailability and efficacy, have sparked a series of innovative research to evaluate its possible application as therapeutic agent for neurodegenerative diseases. Neurodegenerative diseases are widespread throughout the world, and although they are numerous and different, they share common patterns of conditions that result from progressive damage to the brain areas involved in mobility, muscle coordination and strength, mood, and cognition. The present review is aimed at illustrating in vitro and in vivo research, as well as human studies, using PEA treatment, alone or in combination with other compounds, in the presence of neurodegeneration. Namely, attention has been paid to the effects of PEA in counteracting neuroinflammatory conditions and in slowing down the progression of diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Frontotemporal dementia, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Literature research demonstrated the efficacy of PEA in addressing the damage typical of major neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Roedores , Amidas , Animais , Etanolaminas/farmacologia , Etanolaminas/uso terapêutico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Ácidos Palmíticos/farmacologia , Ácidos Palmíticos/uso terapêutico
7.
J Alzheimers Dis ; 85(3): 975-992, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34897089

RESUMO

Brain-derived neurotrophic factor (BDNF), a protein belonging to the neurotrophin family, is known to be heavily involved in synaptic plasticity processes that support brain development, post-lesion regeneration, and cognitive performances, such as learning and memory. Evidence indicates that BDNF expression can be epigenetically regulated by environmental stimuli and thus can mediate the experience-dependent brain plasticity. Environmental enrichment (EE), an experimental paradigm based on the exposure to complex stimulations, constitutes an efficient means to investigate the effects of high-level experience on behavior, cognitive processes, and neurobiological correlates, as the BDNF expression. In fact, BDNF exerts a key role in mediating and promoting EE-induced plastic changes and functional improvements in healthy and pathological conditions. This review is specifically aimed at providing an updated framework of the available evidence on the EE effects on brain and serum BDNF levels, by taking into account both changes in protein expression and regulation of gene expression. A further purpose of the present review is analyzing the potential of BDNF regulation in coping with neurodegenerative processes characterizing Alzheimer's disease (AD), given BDNF expression alterations are described in AD patients. Moreover, attention is also paid to EE effects on BDNF expression in other neurodegenerative disease. To investigate such a topic, evidence provided by experimental studies is considered. A deeper understanding of environmental ability in modulating BDNF expression in the brain may be fundamental in designing more tuned and effective applications of complex environmental stimulations as managing approaches to AD.


Assuntos
Doença de Alzheimer/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Meio Ambiente , Plasticidade Neuronal/fisiologia , Animais , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/sangue , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Humanos , Doenças Neurodegenerativas/metabolismo
8.
Nutrients ; 14(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35565948

RESUMO

Women show an increased risk of cognitive impairment and emotional disorders, such as anxiety and depression, when approaching menopause. Data on risk and protection factors have yielded robust evidence on the effects of lifestyle factors, such as diet, in preserving emotional and cognitive functioning. This review focused on the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on anxiety, depression, and cognition during the menopausal transition. This systematic review considered all articles published until 31 December 2021, and the search was performed on two databases, PubMed and Scopus. The fields of interest were "menopause", "n-3 PUFA" and "emotional and cognitive aspects". Out of the 361 articles found on PubMed and 283 on Scopus, 17 met inclusion criteria. They encompassed 11 human and 6 animal studies. Most studies reported relieved depressive symptoms in relation to n-3 PUFA intake. While controversial results were found on anxiety and cognition in humans, n-3 PUFA consistently reduced anxiety symptoms and improved cognition in animal studies. Taken together, n-3 PUFA intake shows beneficial effects on emotional and cognitive behaviours during menopause transition. However, further investigations could increase knowledge about the effectiveness of n-3 PUFA on psychological well-being in this delicate period of feminine life.


Assuntos
Ácidos Graxos Ômega-3 , Animais , Ansiedade , Transtornos de Ansiedade , Cognição , Ácidos Graxos Ômega-3/farmacologia , Feminino , Humanos , Menopausa
9.
Alzheimers Res Ther ; 12(1): 150, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33198763

RESUMO

BACKGROUND: In recent years, mechanistic, epidemiologic, and interventional studies have indicated beneficial effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) against brain aging and age-related cognitive decline, with the most consistent effects against Alzheimer's disease (AD) confined especially in the early or prodromal stages of the pathology. In the present study, we investigated the action of n-3 PUFA supplementation on behavioral performances and hippocampal neurogenesis, volume, and astrogliosis in aged mice subjected to a selective depletion of basal forebrain cholinergic neurons. Such a lesion represents a valuable model to mimic one of the most reliable hallmarks of early AD neuropathology. METHODS: Aged mice first underwent mu-p75-saporin immunotoxin intraventricular lesions to obtain a massive cholinergic depletion and then were orally supplemented with n-3 PUFA or olive oil (as isocaloric control) for 8 weeks. Four weeks after the beginning of the dietary supplementation, anxiety levels as well as mnesic, social, and depressive-like behaviors were evaluated. Subsequently, hippocampal morphological and biochemical analyses and n-3 PUFA brain quantification were carried out. RESULTS: The n-3 PUFA treatment regulated the anxiety alterations and reverted the novelty recognition memory impairment induced by the cholinergic depletion in aged mice. Moreover, n-3 PUFA preserved hippocampal volume, enhanced neurogenesis in the dentate gyrus, and reduced astrogliosis in the hippocampus. Brain levels of n-3 PUFA were positively related to mnesic abilities. CONCLUSIONS: The demonstration that n-3 PUFA are able to counteract behavioral deficits and hippocampal neurodegeneration in cholinergically depleted aged mice promotes their use as a low-cost, safe nutraceutical tool to improve life quality at old age, even in the presence of first stages of AD.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Ácidos Graxos Ômega-3 , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Animais , Colinérgicos , Hipocampo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA