Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Technol ; 55(1): 488-498, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33283515

RESUMO

Wastewater-based epidemiology may be useful for informing public health response to viral diseases like COVID-19 caused by SARS-CoV-2. We quantified SARS-CoV-2 RNA in wastewater influent and primary settled solids in two wastewater treatment plants to inform the preanalytical and analytical approaches and to assess whether influent or solids harbored more viral targets. The primary settled solids samples resulted in higher SARS-CoV-2 detection frequencies than the corresponding influent samples. Likewise, SARS-CoV-2 RNA was more readily detected in solids using one-step digital droplet (dd)RT-PCR than with two-step RT-QPCR and two-step ddRT-PCR, likely owing to reduced inhibition with the one-step ddRT-PCR assay. We subsequently analyzed a longitudinal time series of 89 settled solids samples from a single plant for SARS-CoV-2 RNA as well as coronavirus recovery (bovine coronavirus) and fecal strength (pepper mild mottle virus) controls. SARS-CoV-2 RNA targets N1 and N2 concentrations correlated positively and significantly with COVID-19 clinically confirmed case counts in the sewershed. Together, the results demonstrate that measuring SARS-CoV-2 RNA concentrations in settled solids may be a more sensitive approach than measuring SARS-CoV-2 in influent.


Assuntos
COVID-19 , Infecções por Coronavirus , Animais , Bovinos , Coronaviridae , Humanos , RNA , RNA Viral/genética , SARS-CoV-2 , Águas Residuárias
2.
Biodegradation ; 28(1): 95-109, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27913891

RESUMO

Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitrotoluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover 13 novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus.


Assuntos
Anisóis/metabolismo , Penicillium/metabolismo , Acetilação , Biodegradação Ambiental , Biotransformação , Remoção de Radical Alquila , Substâncias Explosivas/metabolismo
3.
mSystems ; 9(3): e0110523, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376167

RESUMO

Understanding the ecological impacts of viruses on natural and engineered ecosystems relies on the accurate identification of viral sequences from community sequencing data. To maximize viral recovery from metagenomes, researchers frequently combine viral identification tools. However, the effectiveness of this strategy is unknown. Here, we benchmarked combinations of six widely used informatics tools for viral identification and analysis (VirSorter, VirSorter2, VIBRANT, DeepVirFinder, CheckV, and Kaiju), called "rulesets." Rulesets were tested against mock metagenomes composed of taxonomically diverse sequence types and diverse aquatic metagenomes to assess the effects of the degree of viral enrichment and habitat on tool performance. We found that six rulesets achieved equivalent accuracy [Matthews Correlation Coefficient (MCC) = 0.77, Padj ≥ 0.05]. Each contained VirSorter2, and five used our "tuning removal" rule designed to remove non-viral contamination. While DeepVirFinder, VIBRANT, and VirSorter were each found once in these high-accuracy rulesets, they were not found in combination with each other: combining tools does not lead to optimal performance. Our validation suggests that the MCC plateau at 0.77 is partly caused by inaccurate labeling within reference sequence databases. In aquatic metagenomes, our highest MCC ruleset identified more viral sequences in virus-enriched (44%-46%) than in cellular metagenomes (7%-19%). While improved algorithms may lead to more accurate viral identification tools, this should be done in tandem with careful curation of sequence databases. We recommend using the VirSorter2 ruleset and our empirically derived tuning removal rule. Our analysis provides insight into methods for in silico viral identification and will enable more robust viral identification from metagenomic data sets. IMPORTANCE: The identification of viruses from environmental metagenomes using informatics tools has offered critical insights in microbial ecology. However, it remains difficult for researchers to know which tools optimize viral recovery for their specific study. In an attempt to recover more viruses, studies are increasingly combining the outputs from multiple tools without validating this approach. After benchmarking combinations of six viral identification tools against mock metagenomes and environmental samples, we found that these tools should only be combined cautiously. Two to four tool combinations maximized viral recovery and minimized non-viral contamination compared with either the single-tool or the five- to six-tool ones. By providing a rigorous overview of the behavior of in silico viral identification strategies and a pipeline to replicate our process, our findings guide the use of existing viral identification tools and offer a blueprint for feature engineering of new tools that will lead to higher-confidence viral discovery in microbiome studies.


Assuntos
Benchmarking , Vírus , Ecossistema , Metagenômica/métodos , Bases de Dados de Ácidos Nucleicos
4.
PeerJ ; 9: e11111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996275

RESUMO

Viral metagenomes (viromes) are a valuable untargeted tool for studying viral diversity and the central roles viruses play in host disease, ecology, and evolution. Establishing effective methods to concentrate and purify viral genomes prior to sequencing is essential for high quality viromes. Using virus spike-and-recovery experiments, we stepwise compared two common approaches for virus concentration, ultrafiltration and iron chloride flocculation, across diverse matrices: wastewater influent, wastewater secondary effluent, river water, and seawater. Viral DNA was purified by removing cellular DNA via chloroform cell lysis, filtration, and enzymatic degradation of extra-viral DNA. We found that viral genomes were concentrated 1-2 orders of magnitude more with ultrafiltration than iron chloride flocculation for all matrices and resulted in higher quality DNA suitable for amplification-free and long-read sequencing. Given its widespread use and utility as an inexpensive field method for virome sampling, we nonetheless sought to optimize iron flocculation. We found viruses were best concentrated in seawater with five-fold higher iron concentrations than the standard used, inhibition of DNase activity reduced purification effectiveness, and five-fold more iron was needed to flocculate viruses from freshwater than seawater-critical knowledge for those seeking to apply this broadly used method to freshwater virome samples. Overall, our results demonstrated that ultrafiltration and purification performed better than iron chloride flocculation and purification in the tested matrices. Given that the method performance depended on the solids content and salinity of the samples, we suggest spike-and-recovery experiments be applied when concentrating and purifying sample types that diverge from those tested here.

5.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531401

RESUMO

We demonstrate that an assembly-independent and spike-in facilitated metagenomic quantification approach can be used to screen and quantify over 2,000 genes simultaneously, while delivering absolute gene concentrations comparable to those for quantitative PCR (qPCR). DNA extracted from dairy manure slurry, digestate, and compost was spiked with genomic DNA from a marine bacterium and sequenced using the Illumina HiSeq4000. We compared gene copy concentrations, in gene copies per mass of sample, of five antimicrobial resistance genes (ARGs) generated with (i) our quantitative metagenomic approach, (ii) targeted qPCR, and (iii) a hybrid quantification approach involving metagenomics and qPCR-based 16S rRNA gene quantification. Although qPCR achieved lower quantification limits, the metagenomic method avoided biases caused by primer specificity inherent to qPCR-based methods and was able to detect orders of magnitude more genes than is possible with qPCR assays. We used the approach to simultaneously quantify ARGs in the Comprehensive Antimicrobial Resistance Database (CARD). We observed that the total abundance of tetracycline resistance genes was consistent across different stages of manure treatment on three farms, but different samples were dominated by different tetracycline resistance gene families.IMPORTANCE qPCR and metagenomics are central molecular techniques that have offered insights into biological processes for decades, from monitoring spatial and temporal gene dynamics to tracking ARGs or pathogens. Still needed is a tool that can quantify thousands of relevant genes in a sample as gene copies per sample mass or volume. We compare a quantitative metagenomic approach with traditional qPCR approaches in the quantification of ARG targets in dairy manure samples. By leveraging the benefits of nontargeted community genomics, we demonstrate high-throughput absolute gene quantification of all known ARG sequences in environmental samples.


Assuntos
Resistência Microbiana a Medicamentos/genética , Metagenômica , Bases de Dados de Ácidos Nucleicos , Dosagem de Genes , Reação em Cadeia da Polimerase , Resistência a Tetraciclina/genética
6.
Front Microbiol ; 11: 153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140141

RESUMO

Antibiotic resistance poses a serious threat to global public health, and antibiotic resistance determinants can enter natural aquatic systems through discharge of wastewater effluents. Hospital wastewater in particular is expected to contain high abundances of antibiotic resistance genes (ARGs) compared to municipal wastewater because it contains human enteric bacteria that may include antibiotic-resistant organisms originating from hospital patients, and can also have high concentrations of antibiotics and antimicrobials relative to municipal wastewater. Viruses also play an important role in wastewater treatment systems since they can influence the bacterial community composition through killing bacteria, facilitating transduction of genetic material between organisms, and modifying the chromosomal content of bacteria as prophages. However, little is known about the fate and connections between ARGs, viruses, and their associated bacteria in hospital wastewater systems. To address this knowledge gap, we characterized the composition and persistence of ARGs, dsDNA viruses, and bacteria from influent to effluent in a pilot-scale hospital wastewater treatment system in Israel using shotgun metagenomics. Results showed that ARGs, including genes conferring resistance to antibiotics of high clinical relevance, were detected in all sampling locations throughout the pilot-scale system, with only 16% overall depletion of ARGs per genome equivalent between influent and effluent. The most common classes of ARGs detected throughout the system conferred resistance to aminoglycoside, cephalosporin, macrolide, penam, and tetracycline antibiotics. A greater proportion of total ARGs were associated with plasmid-associated genes in effluent compared to in influent. No strong associations between viral sequences and ARGs were identified in viral metagenomes from the system, suggesting that phage may not be a significant vector for ARG transfer in this system. The majority of viruses in the pilot-scale system belonged to the families Myoviridae, Podoviridae, and Siphoviridae. Gammaproteobacteria was the dominant class of bacteria harboring ARGs and the most common putative viral host in all samples, followed by Bacilli and Betaproteobacteria. In the total bacterial community, the dominant class was Betaproteobacteria for each sample. Overall, we found that a variety of different types of ARGs and viruses were persistent throughout this hospital wastewater treatment system, which can be released to the environment through effluent discharge.

7.
mSphere ; 5(5)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087516

RESUMO

Supply shortages of N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic have motivated institutions to develop feasible and effective N95 respirator reuse strategies. In particular, heat decontamination is a treatment method that scales well and can be implemented in settings with variable or limited resources. Prior studies using multiple inactivation methods, however, have often focused on a single virus under narrowly defined conditions, making it difficult to develop guiding principles for inactivating emerging or difficult-to-culture viruses. We systematically explored how temperature, humidity, and virus deposition solutions impact the inactivation of viruses deposited and dried on N95 respirator coupons. We exposed four virus surrogates across a range of structures and phylogenies, including two bacteriophages (MS2 and phi6), a mouse coronavirus (murine hepatitis virus [MHV]), and a recombinant human influenza A virus subtype H3N2 (IAV), to heat treatment for 30 min in multiple deposition solutions across several temperatures and relative humidities (RHs). We observed that elevated RH was essential for effective heat inactivation of all four viruses tested. For heat treatments between 72°C and 82°C, RHs greater than 50% resulted in a >6-log10 inactivation of bacteriophages, and RHs greater than 25% resulted in a >3.5-log10 inactivation of MHV and IAV. Furthermore, deposition of viruses in host cell culture media greatly enhanced virus inactivation by heat and humidity compared to other deposition solutions, such as phosphate-buffered saline, phosphate-buffered saline with bovine serum albumin, and human saliva. Past and future heat treatment methods must therefore explicitly account for deposition solutions as a factor that will strongly influence observed virus inactivation rates. Overall, our data set can inform the design and validation of effective heat-based decontamination strategies for N95 respirators and other porous surfaces, especially for emerging viruses that may be of immediate and future public health concern.IMPORTANCE Shortages of personal protective equipment, including N95 respirators, during the coronavirus (CoV) disease 2019 (COVID-19) pandemic have highlighted the need to develop effective decontamination strategies for their reuse. This is particularly important in health care settings for reducing exposure to respiratory viruses, like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19. Although several treatment methods are available, a widely accessible strategy will be necessary to combat shortages on a global scale. We demonstrate that the combination of heat and humidity inactivates a range of RNA viruses, including both viral pathogens and common viral pathogen surrogates, after deposition on N95 respirators and achieves the necessary virus inactivation detailed by the U.S. Food and Drug Administration guidelines to validate N95 respirator decontamination technologies. We further demonstrate that depositing viruses onto surfaces when suspended in culture media can greatly enhance observed inactivation, adding caution to how heat and humidity treatment methods are validated.


Assuntos
Descontaminação/métodos , Temperatura Alta , Umidade , Ventiladores Mecânicos , Viroses/prevenção & controle , Inativação de Vírus , Fenômenos Fisiológicos Virais , Betacoronavirus , COVID-19 , Infecções por Coronavirus/prevenção & controle , Humanos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , SARS-CoV-2 , Solução Salina , Saliva , Soroalbumina Bovina
8.
PeerJ ; 5: e2838, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28070462

RESUMO

A freshwater "mussel mortality threshold" was explored as a function of porewater ammonium (NH4+) concentration, mussel biomass, and total nitrogen (N) utilizing a numerical model calibrated with data from mesocosms with and without mussels. A mortality threshold of 2 mg-N L-1 porewater NH4+ was selected based on a study that estimated 100% mortality of juvenile Lampsilis mussels exposed to 1.9 mg-N L-1 NH4+ in equilibrium with 0.18 mg-N L-1 NH3. At the highest simulated mussel biomass (560 g m-2) and the lowest simulated influent water "food" concentration (0.1 mg-N L-1), the porewater NH4+ concentration after a 2,160 h timespan without mussels was 0.5 mg-N L-1 compared to 2.25 mg-N L-1 with mussels. Continuing these simulations while varying mussel biomass and N content yielded a mortality threshold contour that was essentially linear which contradicted the non-linear and non-monotonic relationship suggested by Strayer (2014). Our model suggests that mussels spatially focus nutrients from the overlying water to the sediments as evidenced by elevated porewater NH4+ in mesocosms with mussels. However, our previous work and the model utilized here show elevated concentrations of nitrite and nitrate in overlying waters as an indirect consequence of mussel activity. Even when the simulated overlying water food availability was quite low, the mortality threshold was reached at a mussel biomass of about 480 g m-2. At a food concentration of 10 mg-N L-1, the mortality threshold was reached at a biomass of about 250 g m-2. Our model suggests the mortality threshold for juvenile Lampsilis species could be exceeded at low mussel biomass if exposed for even a short time to the highly elevated total N loadings endemic to the agricultural Midwest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA