Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sensors (Basel) ; 14(5): 8926-39, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24854357

RESUMO

A conducting composite prepared by dispersing multi-walled carbon nanotubes (MWCNTs) into a host matrix consisting of Nafion, electrochemically doped with copper, has been prepared, characterized and used to modify one of the gold electrodes of simply designed electrochemical cells having copier grade transparency sheets as substrates. Electrical measurements performed in deionized water show that the Au/Nafion/Au-MWCNTs-Nafion:Cu cells can be successfully used in order to detect the presence of p-aminophenol (PAP) in water, without the need for any supporting electrolyte. The intensity of the redox peaks arising when PAP is added to deionized water is found to be linearly related to the analyte in the range from 0.2 to 1.6 µM, with a detection limit of 90 nM and a sensitivity of 7 µA·(µM(-1))·cm(-2).


Assuntos
Aminofenóis/análise , Técnicas Eletroquímicas/métodos , Polímeros de Fluorcarboneto/química , Nanotubos de Carbono , Técnicas Eletroquímicas/instrumentação , Limite de Detecção , Nanotubos de Carbono/química
2.
ACS Photonics ; 10(9): 3223-3232, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743937

RESUMO

Microengines have shown promise for a variety of applications in nanotechnology, microfluidics, and nanomedicine, including targeted drug delivery, microscale pumping, and environmental remediation. However, achieving precise control over their dynamics remains a significant challenge. In this study, we introduce a microengine that exploits both optical and thermal effects to achieve a high degree of controllability. We find that in the presence of a strongly focused light beam, a gold-silica Janus particle becomes confined at the stationary point where the optical and thermal forces balance. By using circularly polarized light, we can transfer angular momentum to the particle, breaking the symmetry between the two forces and resulting in a tangential force that drives directed orbital motion. We can simultaneously control the velocity and direction of rotation of the particle changing the ellipticity of the incoming light beam while tuning the radius of the orbit with laser power. Our experimental results are validated using a geometrical optics phenomenological model that considers the optical force, the absorption of optical power, and the resulting heating of the particle. The demonstrated enhanced flexibility in the control of microengines opens up new possibilities for their utilization in a wide range of applications, including microscale transport, sensing, and actuation.

3.
Org Biomol Chem ; 10(5): 1025-31, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159282

RESUMO

We report the synthesis and the characterization of different multi-walled carbon nanotubes (MWCNTs) linked to natural molecules, 5,7-coumarins and/or oleic acid, obtained from purified pristine MWCNTs by a cascade of chemical functionalization. The activities of these modified MWCNTs were investigated in vitro on human umbilical vein endothelial cells (HUVECs) by evaluating their ability to influence cell viability and to induce cell apoptosis. Our data showed that pristine MWCNTs are markedly cytotoxic; conversely, the carboxylated carbon nanotubes, much more readily dispersed in aqueous solutions and CNT-Link, the key intermediate designed by us for the drug anchorage, are biocompatible at the tested concentrations (1 and 10 µg ml(-1)).


Assuntos
Apoptose/efeitos dos fármacos , Cumarínicos/química , Cumarínicos/farmacologia , Nanotubos de Carbono/química , Sobrevivência Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Nanotubos de Carbono/ultraestrutura , Ácido Oleico/química
4.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055282

RESUMO

An optimization work on dye-sensitized solar cells (DSSCs) based on both artificial and natural dyes was carried out by a fine synthesis work embedding gold nanoparticles in a TiO2 semiconductor and perfecting the TiO2 particle sizes of the scattering layer. Noble metal nanostructures are known for the surface plasmon resonance peculiarity that reveals unique properties and has been implemented in several fields such as sensing, photocatalysis, optical antennas and PV devices. By embedding gold nanoparticles in the mesoporous TiO2 layer and adding a scattering layer, we were able to boost the power conversion efficiency (PCE) to 10.8%, using an organic ruthenium complex. The same implementation was carried out using a natural dye, betalains, extracted from Sicilian prickly pear. In this case, the conversion efficiency doubled from 1 to 2% (measured at 1 SUN illumination, 100 mW/cm2 under solar simulation irradiation). Moreover, we obtained (measured at 0.1 SUN, 10 mW/cm2 under blue light LED irradiation) a record efficiency of 15% with the betalain-based dye, paving the way for indoor applications in organic natural devices. Finally, an attempt to scale up the system is shown, and a betalain-based- dye-sensitized solar module (DSSM), with an active area of 43.2 cm2 and a PCE of 1.02%, was fabricated for the first time.

5.
Materials (Basel) ; 14(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652793

RESUMO

Thermochemical materials (TCM) are among the most promising systems to store high energy density for long-term energy storage. To be eligible as candidates, the materials have to fit many criteria such as complete reversibility of the reaction and cycling stability, high availability of the material at low cost, environmentally friendliness, and non-toxicity. Among the most promising TCM, the Mg(OH)2/MgO system appears worthy of attention for its properties in line with those required. In the last few decades, research focused its attention on the optimization of attractive hydroxide performance to achieve a better thermochemical response, however, often negatively affecting its energy density per unit of volume and therefore compromising its applicability on an industrial scale. In this study, pure Mg(OH)2 was developed using different synthesis procedures. Reverse deposition precipitation and deposition precipitation methods were used to obtain the investigated samples. By adding a cationic surfactant (cetyl trimethylammonium bromide), deposition precipitation Mg(OH)2 (CTAB-DP-MH) or changing the precipitating precursor (N-DP-MH), the structural, physical and morphological characteristics were tuned, and the results were compared with a commercial Mg(OH)2 sample. We identified a correlation between the TCM properties and the thermochemical behavior. In such a context, it was demonstrated that both CTAB-DP-MH and N-DP-MH improved the thermochemical performances of the storage medium concerning conversion (64 wt.% and 74 wt.% respectively) and stored and released heat (887 and 1041 kJ/kgMg(OH)2). In particular, using the innovative technique not yet investigated for thermal energy storage (TES) materials, with NaOH as precipitating precursor, N-DP-MH reached the highest stored and released heat capacity per volume unit, ~684 MJ/m3.

6.
Chemphyschem ; 11(9): 1925-31, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20468022

RESUMO

We demonstrate that the crystalline quality of multi-walled carbon nanotubes (MWCNTs) is better estimated by the apparent activation energy of the oxidation reaction, obtained by kinetic analysis in quasi-isothermal conditions, than by the peak-temperature position in the derivative mass loss curves. This is proven by the existence of a good correlation, reported for the first time herein, between apparent activation energy and G'-band to D-band intensity ratio derived from micro-Raman spectroscopy, which is largely accepted as an indicator of the overall MWCNT crystalline quality. In contrast, no clear reliance is found between G'/D intensity ratio and the peak-temperature position in the derivative mass loss curves. These conclusions were drawn after investigation of a large number of commercially available and laboratory prepared MWCNTs.

7.
Colloids Surf B Biointerfaces ; 123: 264-70, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25300473

RESUMO

The design of ß-cyclodextrin/multiwalled carbon nanotubes hybrid (ß-CD-MWCNT) as nanoplatform for the entrapment and delivery of guanine based drugs is described here. The functionalized carbon nanomaterials have been characterized by XPS spectroscopy, electron microscopy (FEG-SEM and TEM), AFM, TGA, and FT-IR to achieve insights on structure, morphology and chemical composition. The drug binding abilities of nanocarrier towards the guanine (G) and Acyclovir (Acy) were proved by UV-vis and DSC experiments. Host-guest equilibrium association constants and drug loading have been evaluated for G/ß-CD-MWCNT and Acy/ß-CD-MWCNT complexes. The release studies showed a sustained delivery of Acy without initial burst effect confirming a strong interaction of drug with the nanoplatform sites. The preliminary antiviral data indicated that the Acyclovir loaded into the ß-CD-MWCNT platform interferes with HSV-1 replication and the antireplicative effect was higher than the free drug.


Assuntos
Guanina/química , Nanotubos de Carbono/química , beta-Ciclodextrinas/química , Aciclovir/química , Química Click/métodos
8.
Chem Commun (Camb) ; 48(54): 6836-8, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22655293

RESUMO

This work reports for the first time a straightforward solvent-free chemical procedure to gain access to Δ-1-pyrroline grafted onto multiwalled carbon nanotubes by the 1,3-dipolar cycloaddition of the mesoionic 4-methyl-2-phenyloxazol-5(4H)-one.


Assuntos
Nanotubos de Carbono/química , Compostos Azo/química , Fulerenos/química , Oxazolona/química , Pirróis/química , Análise Espectral Raman , Tiossemicarbazonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA