Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7702): 520-524, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670288

RESUMO

Neuropeptide Y (NPY) receptors belong to the G-protein-coupled receptor superfamily and have important roles in food intake, anxiety and cancer biology 1,2 . The NPY-Y receptor system has emerged as one of the most complex networks with three peptide ligands (NPY, peptide YY and pancreatic polypeptide) binding to four receptors in most mammals, namely the Y1, Y2, Y4 and Y5 receptors, with different affinity and selectivity 3 . NPY is the most powerful stimulant of food intake and this effect is primarily mediated by the Y1 receptor (Y1R) 4 . A number of peptides and small-molecule compounds have been characterized as Y1R antagonists and have shown clinical potential in the treatment of obesity 4 , tumour 1 and bone loss 5 . However, their clinical usage has been hampered by low potency and selectivity, poor brain penetration ability or lack of oral bioavailability 6 . Here we report crystal structures of the human Y1R bound to the two selective antagonists UR-MK299 and BMS-193885 at 2.7 and 3.0 Å resolution, respectively. The structures combined with mutagenesis studies reveal the binding modes of Y1R to several structurally diverse antagonists and the determinants of ligand selectivity. The Y1R structure and molecular docking of the endogenous agonist NPY, together with nuclear magnetic resonance, photo-crosslinking and functional studies, provide insights into the binding behaviour of the agonist and for the first time, to our knowledge, determine the interaction of its N terminus with the receptor. These insights into Y1R can enable structure-based drug discovery that targets NPY receptors.


Assuntos
Arginina/análogos & derivados , Di-Hidropiridinas/química , Di-Hidropiridinas/metabolismo , Ácidos Difenilacéticos/química , Ácidos Difenilacéticos/metabolismo , Neuropeptídeo Y/metabolismo , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Receptores de Neuropeptídeo Y/antagonistas & inibidores , Receptores de Neuropeptídeo Y/química , Arginina/química , Arginina/metabolismo , Arginina/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Di-Hidropiridinas/farmacologia , Ácidos Difenilacéticos/farmacologia , Humanos , Fosfatos de Inositol/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Neuropeptídeo Y/química , Neuropeptídeo Y/farmacologia , Ressonância Magnética Nuclear Biomolecular , Compostos de Fenilureia/farmacologia , Ligação Proteica , Receptores de Neuropeptídeo Y/agonistas , Receptores de Neuropeptídeo Y/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Dev Biol ; 479: 77-90, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34329618

RESUMO

Protein kinase C (PKC) was one of the first kinases identified in human cells. It is now known to constitute a family of kinases that respond to diacylglycerol, phosphatidylserine and for some family members, Ca2+. They have a plethora of different functions, such as cell cycle regulation, immune response and memory formation. In mammals, 12 PKC family members have been described, usually divided into 4 different subfamilies. We present here a comprehensive evolutionary analysis of the PKC genes in jawed vertebrates with special focus on the impact of the two tetraploidizations (1R and 2R) before the radiation of jawed vertebrates and the teleost tetraploidization (3R), as illuminated by synteny and paralogon analysis including many neighboring gene families. We conclude that the vertebrate predecessor had five PKC genes, as tunicates and lancelets still do, and that the PKC family should therefore ideally be organized into five subfamilies. The 1R and 2R events led to a total of 12 genes distributed among these five subfamilies. All 12 genes are still present in some of the major lineages of jawed vertebrates, including mammals, whereas birds and cartilaginous fishes have lost one member. The 3R event added another nine genes in teleosts, bringing the total to 21 genes. The zebrafish, a common experimental model animal, has retained 19. We have found no independent gene duplications. Thus, the genome doublings completely account for the complexity of this gene family in jawed vertebrates and have thereby had a huge impact on their evolution.


Assuntos
Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Animais , Evolução Biológica , Evolução Molecular , Peixes/genética , Duplicação Gênica/genética , Genoma/genética , Humanos , Mamíferos/genética , Família Multigênica , Filogenia , Vertebrados/genética
3.
J Pharmacol Exp Ther ; 372(1): 73-82, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31771994

RESUMO

Itch stimuli are detected by specialized primary afferents that convey the signal to the spinal cord, but how itch transmission is regulated is still not completely known. Here, we investigated the roles of the neuropeptide Y (NPY)/Y2 receptor system on scratch behavior. The inhibitory Y2 receptor is expressed on mouse primary afferents, and intrathecal administration of the Y2 agonist peptide YY (PYY)3-36 reduced scratch episode frequency and duration induced by compound 48/80, an effect that could be reversed by intrathecal preadministration of the Y2 antagonist BIIE0246. Also, scratch episode duration induced by histamine could be reduced by PYY3-36 In contrast, scratch behavior induced by α-methyl-5HT, protease-activated receptor-2-activating peptide SLIGRL, chloroquine, topical dust mite extract, or mechanical itch induced by von Frey filaments was unaffected by stimulation of Y2 Primary afferent neurons expressing the Npy2r gene were found to coexpress itch-associated markers such as natriuretic peptide precursor b, oncostatin M receptor, and interleukin (IL) 31 receptor A. Accordingly, intrathecal PYY3-36 reduced the scratch behavior induced by IL-31. Our findings imply that the NPY/Y2 system reduces histaminergic and IL-31-associated itch through presynaptic inhibition of a subpopulation of itch-associated primary afferents. SIGNIFICANCE STATEMENT: The spinal neuropeptide Y system dampens scratching behavior induced by histaminergic compounds and interleukin 31, a cytokine involved in atopic dermatitis, through interactions with the Y2 receptor. The Y2 receptor is expressed by primary afferent neurons that are rich in itch-associated neurotransmitters and receptors such as somatostatin, natriuretic peptide precursor b, and interleukin 31 receptors.


Assuntos
Antipruriginosos/farmacologia , Dermatite Atópica/metabolismo , Neurônios Aferentes/metabolismo , Fragmentos de Peptídeos/farmacologia , Peptídeo YY/farmacologia , Prurido/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Antipruriginosos/administração & dosagem , Antipruriginosos/uso terapêutico , Arginina/análogos & derivados , Arginina/toxicidade , Benzazepinas/toxicidade , Células Cultivadas , Cloroquina/farmacologia , Dermatite Atópica/tratamento farmacológico , Gânglios Espinais/citologia , Histamina/farmacologia , Histamina/toxicidade , Interleucinas/farmacologia , Interleucinas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeo Natriurético Encefálico/genética , Peptídeo Natriurético Encefálico/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/fisiologia , Oligopeptídeos/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/uso terapêutico , Peptídeo YY/administração & dosagem , Peptídeo YY/uso terapêutico , Prurido/tratamento farmacológico , Prurido/etiologia , Receptores de Neuropeptídeo Y/genética , Receptores de Oncostatina M/genética , Receptores de Oncostatina M/metabolismo , Serotonina/farmacologia
4.
BMC Evol Biol ; 19(1): 38, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700248

RESUMO

BACKGROUND: Many physiological processes are influenced by nicotinic acetylcholine receptors (nAChR), ranging from neuromuscular and parasympathetic signaling to modulation of the reward system and long-term memory. Due to the complexity of the nAChR family and variable evolutionary rates among its members, their evolution in vertebrates has been difficult to resolve. In order to understand how and when the nAChR genes arose, we have used a broad approach of analyses combining sequence-based phylogeny, chromosomal synteny and intron positions. RESULTS: Our analyses suggest that there were ten subunit genes present in the vertebrate predecessor. The two basal vertebrate tetraploidizations (1R and 2R) then expanded this set to 19 genes. Three of these have been lost in mammals, resulting in 16 members today. None of the ten ancestral genes have kept all four copies after 2R. Following 2R, two of the ancestral genes became triplicates, five of them became pairs, and three seem to have remained single genes. One triplet consists of CHRNA7, CHRNA8 and the previously undescribed CHRNA11, of which the two latter have been lost in mammals but are still present in lizards and ray-finned fishes. The other triplet consists of CHRNB2, CHRNB4 and CHRNB5, the latter of which has also been lost in mammals. In ray-finned fish the neuromuscular subunit gene CHRNB1 underwent a local gene duplication generating CHRNB1.2. The third tetraploidization in the predecessor of teleosts (3R) expanded the repertoire to a total of 31 genes, of which 27 remain in zebrafish. These evolutionary relationships are supported by the exon-intron organization of the genes. CONCLUSION: The tetraploidizations explain all gene duplication events in vertebrates except two. This indicates that the genome doublings have had a substantial impact on the complexity of this gene family leading to a very large number of members that have existed for hundreds of millions of years.


Assuntos
Evolução Molecular , Receptores Nicotínicos/genética , Vertebrados/genética , Animais , Sequência de Bases , Cromossomos/genética , Éxons/genética , Duplicação Gênica , Humanos , Íntrons/genética , Funções Verossimilhança , Filogenia , Poliploidia , Subunidades Proteicas/genética , Sintenia/genética , Fatores de Tempo
5.
BMC Biotechnol ; 19(1): 31, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164119

RESUMO

BACKGROUND: Copy number variation (CNV) plays an important role in human genetic diversity and has been associated with multiple complex disorders. Here we investigate a CNV on chromosome 10q11.22 that spans NPY4R, the gene for the appetite-regulating pancreatic polypeptide receptor Y4. This genomic region has been challenging to map due to multiple repeated elements and its precise organization has not yet been resolved. Previous studies using microarrays were interpreted to show that the most common copy number was 2 per genome. RESULTS: We have investigated 18 individuals from the 1000 Genomes project using the well-established method of read depth analysis and the new droplet digital PCR (ddPCR) method. We find that the most common copy number for NPY4R is 4. The estimated number of copies ranged from three to seven based on read depth analyses with Control-FREEC and CNVnator, and from four to seven based on ddPCR. We suggest that the difference between our results and those published previously can be explained by methodological differences such as reference gene choice, data normalization and method reliability. Three high-quality archaic human genomes (two Neanderthal and one Denisova) display four copies of the NPY4R gene indicating that a duplication occurred prior to the human-Neanderthal/Denisova split. CONCLUSIONS: We conclude that ddPCR is a sensitive and reliable method for CNV determination, that it can be used for read depth calibration in CNV studies based on already available whole-genome sequencing data, and that further investigation of NPY4R copy number variation and its consequences are necessary due to the role of Y4 receptor in food intake regulation.


Assuntos
Variações do Número de Cópias de DNA/genética , Dosagem de Genes , Reação em Cadeia da Polimerase/métodos , Receptores de Neuropeptídeo Y/genética , Análise de Sequência de DNA/métodos , Genoma Humano/genética , Genômica/métodos , Humanos , Reprodutibilidade dos Testes
6.
Mol Pharmacol ; 93(4): 323-334, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29367257

RESUMO

Understanding the agonist-receptor interactions in the neuropeptide Y (NPY)/peptide YY (PYY) signaling system is fundamental for the design of novel modulators of appetite regulation. We report here the results of a multidisciplinary approach to elucidate the binding mode of the native peptide agonist PYY to the human Y2 receptor, based on computational modeling, peptide chemistry and in vitro pharmacological analyses. The preserved binding orientation proposed for full-length PYY and five analogs, truncated at the amino terminus, explains our pharmacological results where truncations of the N-terminal proline helix showed little effect on peptide affinity. This was followed by receptor mutagenesis to investigate the roles of several receptor positions suggested by the modeling. As a complement, PYY-(3-36) analogs were synthesized with modifications at different positions in the common PYY/NPY C-terminal fragment (32TRQRY36-amide). The results were assessed and interpreted by molecular dynamics and Free Energy Perturbation (FEP) simulations of selected mutants, providing a detailed map of the interactions of the PYY/NPY C-terminal fragment with the transmembrane cavity of the Y2 receptor. The amidated C-terminus would be stabilized by polar interactions with Gln2886.55 and Tyr2195.39, while Gln1303.32 contributes to interactions with Q34 in the peptide and T32 is close to the tip of TM7 in the receptor. This leaves the core, α-helix of the peptide exposed to make potential interactions with the extracellular loops. This model agrees with most experimental data available for the Y2 system and can be used as a basis for optimization of Y2 receptor agonists.


Assuntos
Peptídeo YY/genética , Peptídeo YY/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/fisiologia , Células HEK293 , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeo YY/química , Estrutura Secundária de Proteína , Receptores de Neuropeptídeo Y/química , Suínos
7.
J Exp Biol ; 221(Pt 3)2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29440283

RESUMO

Neuropeptides are a diverse class of neuronal signalling molecules that regulate physiological processes and behaviour in animals. However, determining the relationships and evolutionary origins of the heterogeneous assemblage of neuropeptides identified in a range of phyla has presented a huge challenge for comparative physiologists. Here, we review revolutionary insights into the evolution of neuropeptide signalling that have been obtained recently through comparative analysis of genome/transcriptome sequence data and by 'deorphanisation' of neuropeptide receptors. The evolutionary origins of at least 30 neuropeptide signalling systems have been traced to the common ancestor of protostomes and deuterostomes. Furthermore, two rounds of genome duplication gave rise to an expanded repertoire of neuropeptide signalling systems in the vertebrate lineage, enabling neofunctionalisation and/or subfunctionalisation, but with lineage-specific gene loss and/or additional gene or genome duplications generating complex patterns in the phylogenetic distribution of paralogous neuropeptide signalling systems. We are entering a new era in neuropeptide research where it has become feasible to compare the physiological roles of orthologous and paralogous neuropeptides in a wide range of phyla. Moreover, the ambitious mission to reconstruct the evolution of neuropeptide function in the animal kingdom now represents a tangible challenge for the future.


Assuntos
Evolução Molecular , Invertebrados/fisiologia , Neuropeptídeos/genética , Transdução de Sinais/genética , Vertebrados/fisiologia , Animais , Invertebrados/genética , Vertebrados/genética
8.
Gen Comp Endocrinol ; 264: 94-112, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29339183

RESUMO

Growth hormone (GH), prolactin (PRL), prolactin 2 (PRL2) and somatolactin (SL) belong to the same hormone family and have a wide repertoire of effects including development, osmoregulation, metabolism and stimulation of growth. Both the hormone and the receptor family have been proposed to have expanded by gene duplications in early vertebrate evolution. A key question is how hormone-receptor preferences have arisen among the duplicates. The first step to address this is to determine the time window for these duplications. Specifically, we aimed to see if duplications resulted from the two basal vertebrate tetraploidizations (1R and 2R). GH family genes from a broad range of vertebrate genomes were investigated using a combination of sequence-based phylogenetic analyses and comparisons of synteny. We conclude that the PRL and PRL2 genes arose from a common ancestor in 1R/2R, as shown by neighboring gene families. No other gene duplicates were preserved from these tetraploidization events. The ancestral genes that would give rise to GH and PRL/PRL2 arose from an earlier duplication; most likely a local gene duplication as they are syntenic in several species. Likewise, some evidence suggests that SL arose from a local duplication of an ancestral GH/SL gene in the same time window, explaining the lack of similarity in chromosomal neighbors to GH, PRL or PRL2. Thus, the basic triplet of ancestral GH, PRL/PRL2 and SL genes appear to be unexpectedly ancient. Following 1R/2R, only SL was duplicated in the teleost-specific tetraploidization 3R, resulting in SLa and SLb. These time windows contrast with our recent report that the corresponding receptor genes GHR and PRLR arose through a local duplication in jawed vertebrates and that both receptor genes duplicated further in 3R, which reveals a surprising asynchrony in hormone and receptor gene duplications.


Assuntos
Evolução Molecular , Hormônio do Crescimento/genética , Hormônios Hipofisários/genética , Prolactina/genética , Sequência de Aminoácidos , Animais , Sequência Conservada/genética , Genoma , Funções Verossimilhança , Família Multigênica , Filogenia , Sintenia/genética , Terminologia como Assunto , Vertebrados/genética
9.
Gen Comp Endocrinol ; 257: 143-160, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652136

RESUMO

The receptors for the pituitary hormones growth hormone (GH), prolactin (PRL) and somatolactin (SL), and the hematopoietic hormones erythropoietin (EPO) and thrombopoietin (TPO), comprise a structurally related family in the superfamily of cytokine class-I receptors. GH, PRL and SL receptors have a wide variety of effects in development, osmoregulation, metabolism and stimulation of growth, while EPO and TPO receptors guide the production and differentiation of erythrocytes and thrombocytes, respectively. The evolution of the receptors for GH, PRL and SL has been partially investigated by previous reports suggesting different time points for the hormone and receptor gene duplications. This raises questions about how hormone-receptor partnerships have emerged and evolved. Therefore, we have investigated in detail the expansion of this receptor family, especially in relation to the basal vertebrate (1R, 2R) and teleost (3R) tetraploidizations. Receptor family genes were identified in a broad range of vertebrate genomes and investigated using a combination of sequence-based phylogenetic analyses and comparative genomic analyses of synteny. We found that 1R most likely generated EPOR/TPOR and GHR/PRLR ancestors; following this, 2R resulted in EPOR and TPOR genes. No GHR/PRLR duplicate seems to have survived after 2R. Instead the single GHR/PRLR underwent a local duplication sometime after 2R, generating separate syntenic genes for GHR and PRLR. Subsequently, 3R duplicated the gene pair in teleosts, resulting in two GHR and two PRLR genes, but no EPOR or TPOR duplicates. These analyses help illuminate the evolution of the regulatory mechanisms for somatic growth, metabolism, osmoregulation and hematopoiesis in vertebrates.


Assuntos
Eritropoetina/metabolismo , Hormônio do Crescimento Humano/fisiologia , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Receptores da Somatotropina/metabolismo , Trombopoetina/metabolismo , Vertebrados/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Filogenia
10.
BMC Evol Biol ; 16(1): 124, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296292

RESUMO

BACKGROUND: Phosphodiesterase 6 (PDE6) is a protein complex that hydrolyses cGMP and acts as the effector of the vertebrate phototransduction cascade. The PDE6 holoenzyme consists of catalytic and inhibitory subunits belonging to two unrelated gene families. Rods and cones express distinct genes from both families: PDE6A and PDE6B code for the catalytic and PDE6G the inhibitory subunits in rods while PDE6C codes for the catalytic and PDE6H the inhibitory subunits in cones. We performed phylogenetic and comparative synteny analyses for both gene families in genomes from a broad range of animals. Furthermore, gene expression was investigated in zebrafish. RESULTS: We found that both gene families expanded from one to three members in the two rounds of genome doubling (2R) that occurred at the base of vertebrate evolution. The PDE6 inhibitory subunit gene family appears to be unique to vertebrates and expanded further after the teleost-specific genome doubling (3R). We also describe a new family member that originated in 2R and has been lost in amniotes, which we have named pde6i. Zebrafish has retained two additional copies of the PDE6 inhibitory subunit genes after 3R that are highly conserved, have high amino acid sequence identity, are coexpressed in the same photoreceptor type as their amniote orthologs and, interestingly, show strikingly different daily oscillation in gene expression levels. CONCLUSIONS: Together, these data suggest specialisation related to the adaptation to different light intensities during the day-night cycle, most likely maintaining the regulatory function of the PDE inhibitory subunits in the phototransduction cascade.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Evolução Molecular , Transdução de Sinal Luminoso/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Expressão Gênica , Genoma , Filogenia , Células Fotorreceptoras Retinianas Cones , Células Fotorreceptoras Retinianas Bastonetes , Sintenia , Peixe-Zebra/genética
11.
Gen Comp Endocrinol ; 222: 106-15, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26255155

RESUMO

The vertebrate gene family for neuropeptide Y (NPY) receptors expanded by duplication of the chromosome carrying the ancestral Y1-Y2-Y5 gene triplet. After loss of some duplicates, the ancestral jawed vertebrate had seven receptor subtypes forming the Y1 (including Y1, Y4, Y6, Y8), Y2 (including Y2, Y7) and Y5 (only Y5) subfamilies. Lampreys are considered to have experienced the same chromosome duplications as gnathostomes and should also be expected to have multiple receptor genes. However, previously only a Y4-like and a Y5 receptor have been cloned and characterized. Here we report the cloning and characterization of two additional receptors from the sea lamprey Petromyzon marinus. Sequence phylogeny alone could not with certainty assign their identity, but based on synteny comparisons of P. marinus and the Arctic lamprey, Lethenteron camtschaticum, with jawed vertebrates, the two receptors most likely are Y1 and Y2. Both receptors were expressed in human HEK293 cells and inositol phosphate assays were performed to determine the response to the three native lamprey peptides NPY, PYY and PMY. The three peptides have similar potencies in the nanomolar range for Y1. No obvious response to the three peptides was detected for Y2. Synteny analysis supports identification of the previously cloned receptor as Y4. No additional NPY receptor genes could be identified in the presently available lamprey genome assemblies. Thus, four NPY-family receptors have been identified in lampreys, orthologs of the same subtypes as in humans (Y1, Y2, Y4 and Y5), whereas many other vertebrate lineages have retained additional ancestral subtypes.


Assuntos
Neuropeptídeo Y/genética , Petromyzon/crescimento & desenvolvimento , Receptores de Neuropeptídeo Y/genética , Animais , Células HEK293 , Humanos , Filogenia , Sintenia
12.
Gen Comp Endocrinol ; 210: 107-13, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25449662

RESUMO

A peptide ending with RFamide (Arg-Phe-amide) was discovered independently by three different laboratories in 2003 and named 26RFa or QRFP. In mammals, a longer version of the peptide, 43 amino acids, was identified and found to bind to the orphan G protein-coupled receptor GPR103. We searched the genome database of Branchiostoma floridae (Bfl) for receptor sequences related to those that bind peptides ending with RFa or RYa (including receptors for NPFF, PRLH, GnIH, and NPY). One receptor clustered in phylogenetic analyses with mammalian QRFP receptors. The gene has 3 introns in Bfl and 5 in human, but all intron positions differ, implying that the introns were inserted independently. A QRFP-like peptide consisting of 25 amino acids and ending with RFa was identified in the amphioxus genome. Eight of the ten last amino acids are identical between Bfl and human. The prepro-QRFP gene in Bfl has one intron in the propeptide whereas the human gene lacks introns. The Bfl QRFP peptide was synthesized and the receptor was functionally expressed in human cells. The response was measured as inositol phosphate (IP) turnover. The Bfl QRFP peptide was found to potently stimulate the receptor's ability to induce IP turnover with an EC50 of 0.28nM. Also the human QRFP peptides with 26 and 43 amino acids were found to stimulate the receptor (1.9 and 5.1nM, respectively). Human QRFP with 26 amino acids without the carboxyterminal amide had dramatically lower potency at 1.3µM. Thus, we have identified an amphioxus QRFP-related peptide and a corresponding receptor and shown that they interact to give a functional response.


Assuntos
Anfioxos/genética , Peptídeos/genética , Receptores Acoplados a Proteínas G/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Íntrons , Dados de Sequência Molecular , Neuropeptídeos , Filogenia , Transfecção
13.
Gen Comp Endocrinol ; 209: 162-70, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25230393

RESUMO

The corticotropin releasing hormone receptors (CRHR) and the arthropod diuretic hormone 44 receptors (DH44R) are structurally and functionally related members of the G protein-coupled receptors (GPCR) of the secretin-like receptor superfamily. We show here that they derive from a bilaterian predecessor. In protostomes, the receptor became DH44R that has been identified and functionally characterised in several arthropods but the gene seems to be absent from nematode genomes. Duplicate DH44R genes (DH44 R1 and DH44R2) have been described in some arthropods resulting from lineage-specific duplications. Recently, CRHR-DH44R-like receptors have been identified in the genomes of some lophotrochozoans (molluscs, which have a lineage-specific gene duplication, and annelids) as well as representatives of early diverging deuterostomes. Vertebrates have previously been reported to have two CRHR receptors that were named CRHR1 and CRHR2. To resolve their origin we have analysed recently assembled genomes from representatives of early vertebrate divergencies including elephant shark, spotted gar and coelacanth. We show here by analysis of synteny conservation that the two CRHR genes arose from a common ancestral gene in the early vertebrate tetraploidizations (2R) approximately 500 million years ago. Subsequently, the teleost-specific tetraploidization (3R) resulted in a duplicate of CRHR1 that has been lost in some teleost lineages. These results help distinguish orthology and paralogy relationships and will allow studies of functional conservation and changes during evolution of the individual members of the receptor family and their multiple native peptide agonists.


Assuntos
Hormônio Liberador da Corticotropina/genética , Proteínas de Drosophila/genética , Evolução Molecular , Invertebrados/genética , Receptores de Superfície Celular/genética , Vertebrados/genética , Animais , Sequência Conservada , Hormônio Liberador da Corticotropina/classificação , Hormônio Liberador da Corticotropina/metabolismo , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Humanos , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Invertebrados/metabolismo , Filogenia , Receptores de Superfície Celular/classificação , Receptores de Superfície Celular/metabolismo , Vertebrados/metabolismo
14.
Biochemistry ; 52(45): 7987-98, 2013 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-24111902

RESUMO

Neuropeptide Y and peptide YY receptor type 2 (Y2) is involved in appetite regulation and several other physiological processes. We have investigated the structure of the human Y2 receptor. Computational modeling of receptor-agonist interactions was used as a guide to design a series of receptor mutants, followed by binding assays using full-length and truncated peptide agonists and the Y2-specific antagonist BIIE0246. Our model suggested a hydrogen bond network among highly conserved residues Thr2.61, Gln3.32, and His7.39, which could play roles in ligand binding and/or receptor structure. In addition, the C-terminus of the peptide could make contact with residues Tyr5.38 and Leu6.51. Mutagenesis of all these positions, followed by binding assays, provides experimental support for our computational model: most of the mutants for the residues forming the proposed hydrogen bond network displayed reduced peptide agonist affinities as well as reduced hPYY3-36 potency in a functional assay. The Ala and Leu mutants of Gln3.32 and His7.39 disrupted membrane expression of the receptor. Combined with the modeling, the experimental results support roles for these hydrogen bond network residues in peptide binding as well as receptor architecture. The reduced agonist affinity for mutants of Tyr5.38 and Leu6.51 supports their role in a binding pocket surrounding the invariant tyrosine at position 36 of the peptide ligands. The results for antagonist BIIE0246 suggest several differences in interactions compared to those of the peptides. Our results lead to a new structural model for NPY family receptors and peptide binding.


Assuntos
Neuropeptídeo Y/metabolismo , Peptídeo YY/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Peptídeos/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Neuropeptídeo Y/química , Peptídeo YY/química , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeo Y/química , Receptores de Neuropeptídeo Y/genética , Receptores de Peptídeos/química , Receptores de Peptídeos/genética
15.
BMC Evol Biol ; 13: 238, 2013 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-24180662

RESUMO

BACKGROUND: Vertebrate color vision is dependent on four major color opsin subtypes: RH2 (green opsin), SWS1 (ultraviolet opsin), SWS2 (blue opsin), and LWS (red opsin). Together with the dim-light receptor rhodopsin (RH1), these form the family of vertebrate visual opsins. Vertebrate genomes contain many multi-membered gene families that can largely be explained by the two rounds of whole genome duplication (WGD) in the vertebrate ancestor (2R) followed by a third round in the teleost ancestor (3R). Related chromosome regions resulting from WGD or block duplications are said to form a paralogon. We describe here a paralogon containing the genes for visual opsins, the G-protein alpha subunit families for transducin (GNAT) and adenylyl cyclase inhibition (GNAI), the oxytocin and vasopressin receptors (OT/VP-R), and the L-type voltage-gated calcium channels (CACNA1-L). RESULTS: Sequence-based phylogenies and analyses of conserved synteny show that the above-mentioned gene families, and many neighboring gene families, expanded in the early vertebrate WGDs. This allows us to deduce the following evolutionary scenario: The vertebrate ancestor had a chromosome containing the genes for two visual opsins, one GNAT, one GNAI, two OT/VP-Rs and one CACNA1-L gene. This chromosome was quadrupled in 2R. Subsequent gene losses resulted in a set of five visual opsin genes, three GNAT and GNAI genes, six OT/VP-R genes and four CACNA1-L genes. These regions were duplicated again in 3R resulting in additional teleost genes for some of the families. Major chromosomal rearrangements have taken place in the teleost genomes. By comparison with the corresponding chromosomal regions in the spotted gar, which diverged prior to 3R, we could time these rearrangements to post-3R. CONCLUSIONS: We present an extensive analysis of the paralogon housing the visual opsin, GNAT and GNAI, OT/VP-R, and CACNA1-L gene families. The combined data imply that the early vertebrate WGD events contributed to the evolution of vision and the other neuronal and neuroendocrine functions exerted by the proteins encoded by these gene families. In pouched lamprey all five visual opsin genes have previously been identified, suggesting that lampreys diverged from the jawed vertebrates after 2R.


Assuntos
Evolução Molecular , Duplicação Gênica , Genoma , Opsinas/genética , Filogenia , Vertebrados/genética , Animais , Peixes/genética , Genômica , Ocitocina/genética , Receptores de Ocitocina/genética , Receptores de Vasopressinas/genética , Sintenia , Transducina/genética
16.
Biochem Biophys Res Commun ; 441(4): 820-4, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24211197

RESUMO

G protein-coupled receptors (GPCRs) are a large group of receptors of great biological and clinical relevance. Despite this, the tools for a detailed analysis of ligand-GPCR interactions are limited. The aim of this paper was to demonstrate how ligand binding to GPCRs can be followed in real-time on living cells. This was conducted using two model systems, the radiolabeled porcine peptide YY (pPYY) interacting with transfected human Y2 receptor (hY2R) and the bombesin antagonist RM26 binding to the naturally expressed gastrin-releasing peptide receptor (GRPR). By following the interaction over time, the affinity and kinetic properties such as association and dissociation rate were obtained. Additionally, data were analyzed using the Interaction Map method, which can evaluate a real-time binding curve and present the number of parallel interactions contributing to the curve. It was found that pPYY binds very slowly with an estimated time to equilibrium of approximately 12h. This may be problematic in standard end-point assays where equilibrium is required. The RM26 binding showed signs of heterogeneity, observed as two parallel interactions with unique kinetic properties. In conclusion, measuring binding in real-time using living cells opens up for a better understanding of ligand interactions with GPCRs.


Assuntos
Ensaio Radioligante , Receptores Acoplados a Proteínas G/metabolismo , Animais , Bombesina/análogos & derivados , Células HEK293 , Humanos , Ligantes , Peptídeo YY/química , Peptídeo YY/metabolismo , Traçadores Radioativos , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Suínos , Fatores de Tempo , Transfecção
18.
Genomics ; 100(4): 203-11, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22814267

RESUMO

Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations.


Assuntos
Evolução Molecular , Proteínas de Ligação ao GTP/genética , Duplicação Gênica , Transducina/genética , Vertebrados/genética , Animais , Genoma , Humanos , Família Multigênica , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia
19.
Int J Biol Macromol ; 247: 125771, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37433419

RESUMO

ATP-sensitive potassium ion channels (KATP) are transmembrane proteins that modulate insulin release and muscle contraction. KATP channels are composed of two types of subunit, Kir6 and SUR, which exist in two and three isoforms respectively with different tissue distribution. In this work, we identify a previously undescribed ancestral vertebrate gene encoding a Kir6-related protein that we have named Kir6.3, which may not have a SUR binding partner, unlike the other two Kir6 proteins. Whereas Kir6.3 was lost in amniotes including mammals, it is still present in several early-diverging vertebrate lineages such as frogs, coelacanth, and rayfinned fishes. Molecular dynamics (MD) simulations using homology models of Kir6.1, Kir6.2, and Kir6.3 from the coelacanth Latimeria chalumnae showed that the three proteins exhibit subtle differences in their dynamics. Steered MD simulations of Kir6-SUR pairs suggest that Kir6.3 has a lower binding affinity for the SUR proteins than either Kir6.1 or Kir6.2. As we found no additional SUR gene in the genomes of the species that have Kir6.3, it most likely forms a lone tetramer. These findings invite studies of the tissue distribution of Kir6.3 in relation to the other Kir6 as well as SUR proteins to determine the functional roles of Kir6.3.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/metabolismo , Simulação de Dinâmica Molecular , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
20.
J Neurosci ; 31(39): 13972-80, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21957258

RESUMO

Eps15 homology domain-containing proteins (EHDs) are conserved ATPases implicated in membrane remodeling. Recently, EHD1 was found to be enriched at synaptic release sites, suggesting a possible involvement in the trafficking of synaptic vesicles. We have investigated the role of an EHD1/3 ortholog (l-EHD) in the lamprey giant reticulospinal synapse. l-EHD was detected by immunogold at endocytic structures adjacent to release sites. In antibody microinjection experiments, perturbation of l-EHD inhibited synaptic vesicle endocytosis and caused accumulation of clathrin-coated pits with atypical, elongated necks. The necks were covered with helix-like material containing dynamin. To test whether l-EHD directly interferes with dynamin function, we used fluid-supported bilayers as in vitro assay. We found that l-EHD strongly inhibited vesicle budding induced by dynamin in the constant presence of GTP. l-EHD also inhibited dynamin-induced membrane tubulation in the presence of GTPγS, a phenomenon linked with dynamin helix assembly. Our in vivo results demonstrate the involvement of l-EHD in clathrin/dynamin-dependent synaptic vesicle budding. Based on our in vitro observations, we suggest that l-EHD acts to limit the formation of long, unproductive dynamin helices, thereby promoting vesicle budding.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Transporte/fisiologia , Dinaminas/fisiologia , Vesículas Sinápticas/fisiologia , Proteínas de Transporte Vesicular/fisiologia , Animais , Feminino , Lampreias , Masculino , Estrutura Secundária de Proteína/fisiologia , Ratos , Vesículas Sinápticas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA