Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34728565

RESUMO

Mucus is a biological gel covering the surface of several tissues and ensuring key biological functions, including as a protective barrier against dehydration, pathogen penetration, or gastric acids. Mucus biological functioning requires a finely tuned balance between solid-like and fluid-like mechanical response, ensured by reversible bonds between mucins, the glycoproteins that form the gel. In living organisms, mucus is subject to various kinds of mechanical stresses, e.g., due to osmosis, bacterial penetration, coughing, and gastric peristalsis. However, our knowledge of the effects of stress on mucus is still rudimentary and mostly limited to macroscopic rheological measurements, with no insight into the relevant microscopic mechanisms. Here, we run mechanical tests simultaneously to measurements of the microscopic dynamics of pig gastric mucus. Strikingly, we find that a modest shear stress, within the macroscopic rheological linear regime, dramatically enhances mucus reorganization at the microscopic level, as signaled by a transient acceleration of the microscopic dynamics, by up to 2 orders of magnitude. We rationalize these findings by proposing a simple, yet general, model for the dynamics of physical gels under strain and validate its assumptions through numerical simulations of spring networks. These results shed light on the rearrangement dynamics of mucus at the microscopic scale, with potential implications in phenomena ranging from mucus clearance to bacterial and drug penetration.


Assuntos
Modelos Teóricos , Muco/fisiologia , Animais , Módulo de Elasticidade , Reologia , Estresse Mecânico , Suínos , Substâncias Viscoelásticas
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339210

RESUMO

The respiratory mucus, a viscoelastic gel, effectuates a primary line of the airway defense when operated by the mucociliary clearance. In chronic respiratory diseases (CRDs), such as asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF), the mucus is overproduced and its solid content augments, changing its structure and viscoelastic properties and determining a derangement of essential defense mechanisms against opportunistic microbial (virus and bacteria) pathogens. This ensues in damaging of the airways, leading to a vicious cycle of obstruction and infection responsible for the harsh clinical evolution of these CRDs. Here, we review the essential features of normal and pathological mucus (i.e., sputum in CF, COPD, and asthma), i.e., mucin content, structure (mesh size), micro/macro-rheology, pH, and osmotic pressure, ending with the awareness that sputum biomarkers (mucins, inflammatory proteins and peptides, and metabolites) might serve to indicate acute exacerbation and response to therapies. There are some indications that old and novel treatments may change the structure, viscoelastic properties, and biomarker content of sputum; however, a wealth of work is still needed to embrace these measures as correlates of disease severity in association with (or even as substitutes of) pulmonary functional tests.


Assuntos
Asma , Fibrose Cística , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Humanos , Muco/metabolismo , Transtornos Respiratórios/metabolismo , Sistema Respiratório/metabolismo , Fibrose Cística/metabolismo , Asma/metabolismo , Escarro/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucinas/metabolismo
3.
Soft Matter ; 19(14): 2646-2653, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36967649

RESUMO

In this article, we present the mobilities of prolate ellipsoidal micrometric particles close to an air-water interface measured by dual wave reflection interference microscopy. Particle's position and orientation with respect to the interface are simultaneously measured as a function of time. From the measured mean square displacement, five particle mobilities (3 translational and 2 rotational) and two translational-rotational cross-correlations are extracted. The fluid dynamics governing equations are solved by the finite element method to numerically evaluate the same mobilities, imposing either slip and no-slip boundary conditions to the flow at the air-water interface. The comparison between experiments and simulations reveals an agreement with no-slip boundary conditions prediction for the translation normal to the interface and the out-of-plane rotation, and with slip ones for parallel translations and in-plane rotation. We rationalize these evidences in the framework of surface incompressibility at the interface.

4.
Soft Matter ; 12(42): 8726-8735, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27714364

RESUMO

The effect of aging on the mechanical behaviour of ionically cross-linked alginate gels is studied in detail. Relaxation experiments upon both unconfined compression and torsion are performed on samples at different aging times. The elastic moduli of the gel are found to increase with the aging time, whereas the internal (constitutive) mechanism of the relaxation of the solid component of the gel is found to be unaffected by aging. It is demonstrated that the Linear Visco-Elastic Stress/Diffusion Coupling model [D. Larobina, F. Greco, J. Chem. Phys., 2012, 136, 134904], recently developed by two of the present authors, is able to quantitatively reproduce the experimental data for differently aged samples, at early-to-intermediate relaxation times. Moreover, it is shown that the gel always undergoes a spontaneous expulsion of water (syneresis) and some spontaneous deformation for a sufficiently long observation time, even in the absence of any externally imposed strain. The latter phenomenology progressively slows down with increasing of the gel age. By proper time shifting of the late relaxation decays, i.e., by properly defining an "effective time", master curves can be obtained in all cases, with all data pertaining to differently aged samples collapsing on a single relaxation law for each deformation history. The dependence of the shift factors on the aging time is found to follow a power law behavior, with an exponent of 1.39.

5.
Soft Matter ; 11(30): 6045-54, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26133931

RESUMO

The mechanical behaviour of ionically cross-linked alginate gels is investigated here in detail. To determine the range of linear response of the materials, uniaxial, unconfined compression and torsional deformation experiments are performed, obtaining both the stress-strain and the viscoelastic behaviour of the gels. On-line measurements of the radii of the cylindrical gel samples in these experiments are also reported. The linearity range in the gel mechanical response is found to be rather limited, up to 6% strain, at most, contrary to more optimistic conclusions usually reported in the literature. We confirm the presence of a stress-diffusion coupling phenomenon in our alginates, i.e., the migration of water from/into the gels in response to the applied deformation. A phenomenon of inner (constitutive) relaxation of the network component of the gels is also clearly identified, and observed to occur, in parallel with solvent diffusion, upon compression. At sufficiently longer times after a deformation step, syneresis is always observed, with concomitant nonstandard viscoelastic effects, such as the growth of a normal force in torsion, and a size dependent decay of the longitudinal force in compression. We applied a two-fluid model, recently developed by two of the present authors [D. Larobina and F. Greco, J. Chem. Phys., 2012, 136(13), 134904], to simulate the relaxation tests upon torsional and compressive deformations, and to fit our own experiments. The model is found to well describe the coupling between constitutive relaxation and diffusion, and to reproduce the available force and radii data before the advent of syneresis.

6.
Int J Pharm ; 659: 124255, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38782151

RESUMO

With the aim to find an alternative vehicle to the most used thermosensitive hydrogels for efficient nanotechnology-based nose-to-brain delivery approach for Parkinson's disease (PD) treatment, in this work we evaluated the Dopamine (DA) and the antioxidant grape seed-derived pro-anthocyanidins (Grape Seed Extract, GSE) co-loaded solid lipid nanoparticles (SLNs) put in slight viscous dispersions (SVDs). These SVDs were prepared by dispersion in water at low concentrations of mucoadhesive polymers to which SLN pellets were added. For the purpose, we investigated two polymeric blends, namely Poloxamer/Carbopol (PF-127/Carb) and oxidized alginate/Hydroxypropylmethyl cellulose (AlgOX/HPMC). Rheological studies showed that the two fluids possess Newtonian behaviour with a viscosity slightly higher that water. The pH values of the SVDs were mainly within the normal range of nasal fluid as well as almost no osmotic effect was associated to both SVDs. All the SVDs were capable to provide DA permeation through nasal porcine mucosa. Moreover, it was found that PF-127/Carb blend possesses penetration enhancer capability better than the Alg OX/HPMC combination. Flow cytometry studies demonstrated the uptake of viscous liquids incorporating fluorescent SLNs by human nasal RPMI 2650 cell in time-dependent manner. In conclusion, the SVD formulations may be considered promising alternatives to thermosensitive hydrogels strategy. Moreover, in a broader perspective, such SVD formulations may be also hopeful for treating various neurological diseases beyond PD treatment.


Assuntos
Administração Intranasal , Dopamina , Extrato de Sementes de Uva , Nanopartículas , Mucosa Nasal , Nanopartículas/química , Extrato de Sementes de Uva/química , Extrato de Sementes de Uva/administração & dosagem , Animais , Viscosidade , Suínos , Dopamina/administração & dosagem , Dopamina/química , Mucosa Nasal/metabolismo , Mucosa Nasal/efeitos dos fármacos , Humanos , Poloxâmero/química , Portadores de Fármacos/química , Reologia , Polímeros/química , Lipídeos/química , Lipossomos
7.
J Chem Phys ; 136(13): 134904, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22482587

RESUMO

Modeling of stress/diffusion coupling in gels, originally developed by Doi for the case where the solid component of the gel is a linear elastic network, is here extended to the case of a linear viscoelastic solid component, thereby allowing for a mechanism of intrinsic relaxation. The extended model is solved for a cylindrical gel subjected to unconfined uniaxial compression. Depending on the respective values of the two characteristic times, i.e., diffusive and viscoelastic, measurable quantities like axial force and external radius of the cylindrical gel are calculated to display different qualitative behaviors. Calculated results for the case of uniaxial traction are also reported, which compare favorably with some available experimental results.

8.
Eur J Pharm Biopharm ; 178: 94-104, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35926759

RESUMO

In most chronic respiratory diseases, excessive viscous airway secretions oppose a formidable permeation barrier to drug delivery systems (DDSs), with a limit to their therapeutic efficacy for the targeting epithelium. Since mucopenetration of DDSs with slippery technology (i.e. PEGylation) has encountered a reduction in the presence of sticky and complex airway secretions, our aim was to evaluate the relevance of magnetic PEGylated Solid Lipid Nanoparticles (mSLNs) for pulling them through chronic obstructive pulmonary disease (COPD) airway secretions. Thus, COPD sputum from outpatient clinic, respiratory secretions aspirated from high (HI) and low (LO) airways of COPD patients in acute respiratory insufficiency, and porcine gastric mucus (PGM) were investigated for their permeability to mSLN particles under a magnetic field. Rheological tests and mSLN adhesion to airway epithelial cells (AECs) were also investigated. The results of mucopenetration show that mSLNs are permeable both in COPD sputum and in PGM, while HI and LO secretions are always impervious. Parallel rheological results show a different elastic property, which can be associated with different mucus mesostructures. Finally, adhesion tests confirm the role of the magnetic field in improving the interaction of SLNs with AECs. Overall, our results reveal that mesostructure is of paramount importance in determining the mucopenetration of magnetic SLNs.


Assuntos
Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Animais , Compostos Férricos , Lipossomos , Muco , Nanopartículas/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Suínos
9.
Polymers (Basel) ; 13(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771174

RESUMO

Anomalous aging in soft glassy materials has generated a great deal of interest because of some intriguing features of the underlying relaxation process, including the emergence of "ultra-long-range" dynamical correlations. An intriguing possibility is that such a huge correlation length is reflected in detectable ensemble fluctuations of the macroscopic material properties. We tackle this issue by performing replicated mechanical and dynamic light scattering (DLS) experiments on alginate gels, which recently emerged as a good model-system of anomalous aging. Here we show that some of the monitored quantities display wide variability, including large fluctuations in the stress relaxation and the occasional presence of two-step decay in the DLS decorrelation functions. By quantifying elastic fluctuation through the standard deviation of the elastic modulus and dynamic heterogeneities through the dynamic susceptibility, we find that both quantities do increase with the gel age over a comparable range. Our results suggest that large elastic fluctuations are closely related to ultra-long-range dynamical correlation, and therefore may be a general feature of anomalous aging in gels.

10.
Polymers (Basel) ; 13(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652927

RESUMO

Atherosclerosis-related coronary artery disease (CAD) is one of the leading sources of mortality and morbidity in the world. Primary and secondary prevention appear crucial to reduce CAD-related complications. In this scenario, statin treatment was shown to be clinically effective in the reduction of adverse events, but systemic administration provides suboptimal results. As an attempt to improve bioavailability and effectiveness, polymers and nanoparticles for statin delivery were recently investigated. Polymers and nanoparticles can help statin delivery and their effects by increasing oral bioavailability or enhancing target-specific interaction, leading to reduced vascular endothelial dysfunction, reduced intimal hyperplasia, reduced ischemia-reperfusion injury, increased cardiac regeneration, positive remodeling in the extracellular matrix, reduced neointimal growth and increased re-endothelization. Moreover, some innovative aspects described in other cardiovascular fields could be translated into the CAD scenario. Recent preclinical studies are underlining the effect of statins in the stimulation and differentiation of endogenous cardiac stem cells, as well as in targeting of local adverse conditions implicated in atherosclerosis, and statin delivery through poly-lactic-co-glycolic acid (PLGA) appears the most promising aspect of current research to enhance drug activity. The present review intends to summarize the current evidence about polymers and nanoparticles for statin delivery in the field of cardiovascular disease, trying to shed light on this topic and identify new avenues for future studies.

11.
Polymers (Basel) ; 13(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066192

RESUMO

Over the years, there has been an increasing number of cardiac and orthopaedic implanted medical devices, which has caused an increased incidence of device-associated infections. The surfaces of these indwelling devices are preferred sites for the development of biofilms that are potentially lethal for patients. Device-related infections form a large proportion of hospital-acquired infections and have a bearing on both morbidity and mortality. Treatment of these infections is limited to the use of systemic antibiotics with invasive revision surgeries, which had implications on healthcare burdens. The purpose of this review is to describe the main causes that lead to the onset of infection, highlighting both the biological and clinical pathophysiology. Both passive and active surface treatments have been used in the field of biomaterials to reduce the impact of these infections. This includes the use of antimicrobial peptides and ionic liquids in the preventive treatment of antibiotic-resistant biofilms. Thus far, multiple in vivo studies have shown efficacious effects against the antibiotic-resistant biofilm. However, this has yet to materialize in clinical medicine.

12.
Polymers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573282

RESUMO

Coronary heart disease remains one of the leading causes of death in most countries. Healthcare improvements have seen a shift in the presentation of disease with a reducing number of ST-segment elevation myocardial infarctions (STEMIs), largely due to earlier reperfusion strategies such as percutaneous coronary intervention (PCI). Stents have revolutionized the care of these patients, but the long-term effects of these devices have been brought to the fore. The conceptual and technologic evolution of these devices from bare-metal stents led to the creation and wide application of drug-eluting stents; further research introduced the idea of polymer-based resorbable stents. We look at the evolution of stents and the multiple advantages and disadvantages offered by each of the different polymers used to make stents in order to identify what the stent of the future may consist of whilst highlighting properties that are beneficial to the patient alongside the role of the surgeon, the cardiologist, engineers, chemists, and biophysicists in creating the ideal stent.

13.
Biomimetics (Basel) ; 5(3)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756408

RESUMO

Ross operation might be a valid option for congenital and acquired left ventricular outflow tract disease in selected cases. As the pulmonary autograft is a living substitute for the aortic root that bioinspired the Ross operation, we have created an experimental animal model in which the vital capacity of the pulmonary autograft (PA) has been studied during physiological growth. The present study aims to determine any increased stresses in PA root and leaflet compared to the similar components of the native aorta. An animal model and a mathematical analysis using finite element analysis have been used for the purpose of this manuscript. The results of this study advance our understanding of the relative benefits of pulmonary autograft for the management of severe aortic valve disease. However, it launches a warning about the importance of the choice of the length of the conduits as mechanical deformation, and, therefore, potential failure, increases with the length of the segment subjected to stress. Understanding PA root and leaflet stresses is the first step toward understanding PA durability and the regions prone to dilatation, ultimately to refine the best implant technique.

14.
Interact Cardiovasc Thorac Surg ; 27(2): 269-276, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29538653

RESUMO

OBJECTIVES: Reinforcements for the pulmonary autograft (PA) in the Ross operation have been introduced to avoid the drawback of conduit expansion and failure. With the aid of an in silico simulation, the biomechanical boundaries applied to a healthy PA during the operation were studied to tailor the best implant technique to prevent reoperation. METHODS: Follow-up echocardiograms of 66 Ross procedures were reviewed. Changes in the dimensions and geometry of reinforced and non-reinforced PAs were evaluated. Miniroot and subcoronary implantation techniques were used in this series. Mechanical stress tests were performed on 36 human pulmonary and aortic roots explanted from donor hearts. Finite element analysis was applied to obtain high-fidelity simulation under static and dynamic conditions of the biomechanical properties and applied stresses on the PA root and leaflet and the similar components of the native aorta. RESULTS: The non-reinforced group showed increases in the percentages of the mean diameter that were significantly higher than those in the reinforced group at the level of the Valsalva sinuses (3.9%) and the annulus (12.1%). The mechanical simulation confirmed geometrical and dimensional changes detected by clinical imaging and demonstrated the non-linear biomechanical behaviour of the PA anastomosed to the aorta, a stiffer behaviour of the aortic root in relation to the PA and similar qualitative and quantitative behaviours of leaflets of the 2 tissues. The annulus was the most significant constraint to dilation and affected the distribution of stress and strain within the entire complex, with particular strain on the sutured regions. The PA was able to evenly absorb mechanical stresses but was less adaptable to circumferential stresses, potentially explaining its known dilatation tendency over time. CONCLUSIONS: The absence of reinforcement leads to a more marked increase in the diameter of the PA. Preservation of the native geometry of the PA root is crucial; the miniroot technique with external reinforcement is the most suitable strategy in this context.


Assuntos
Aorta/cirurgia , Insuficiência da Valva Aórtica/cirurgia , Valva Aórtica/cirurgia , Autoenxertos , Valva Pulmonar/transplante , Adolescente , Adulto , Aneurisma/cirurgia , Criança , Pré-Escolar , Dilatação Patológica/cirurgia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/cirurgia , Reoperação , Estudos Retrospectivos , Estresse Mecânico , Transplante Autólogo , Adulto Jovem
15.
Curr Drug Deliv ; 14(2): 216-223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27440070

RESUMO

Hydrogels can constitute reliable delivery systems of drugs, including those based on nucleic acids (NABDs) such as small interfering ribonucleic acid (siRNA). Their nature, structure, and response to physiological or external stimuli strongly influence the delivery mechanisms of entrapped active molecules, and, in turn, their possible uses in pharmacological and biomedical applications. In this study, a thermo-gelling chitosan/ß-glycero-phosphate system has been optimized in order to assess its use as injectable system able to: i) gelling at physiological pH and temperature, and ii) modulate the release of included active ingredients. To this aim, we first analyzed the effect of acetic acid concentration on the gelation temperature. We then found the "optimized composition", namely, the one in which the Tgel is equal to the physiological temperature. The resulting gel was tested, by low field nuclear magnetic resonance (LF-NMR), to evaluate its average mesh-size, which can affect release kinetics of loaded drug. Finally, films of gelled chitosan, loaded with a model drug, have been tested in vitro to monitor their characteristic times, i.e. diffusion and erosion time, when they are exposed to a medium mimicking a physiological environment (buffer solution at pH 7.4). Results display that the optimized system is deemed to be an ideal candidate as injectable gelling material for a sustained release.


Assuntos
Quitosana/química , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Glicerofosfatos/química , Hidrogéis/química , Ácido Acético/química , Injeções , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Reologia , Temperatura
16.
Curr Drug Deliv ; 14(2): 158-178, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27264726

RESUMO

Modern Chemical Engineering was born around the end of the 19th century in Great Britain, Germany, and the USA, the most industrialized countries at that time. Milton C. Whitaker, in 1914, affirmed that the difference between Chemistry and Chemical Engineering lies in the capability of chemical engineers to transfer laboratory findings to the industrial level. Since then, Chemical Engineering underwent huge transformations determining the detachment from the original Chemistry nest. The beginning of the sixties of the 20th century saw the development of a new branch of Chemical Engineering baptized Biomedical Engineering by Peppas and Langer and that now we can name Biological Engineering. Interestingly, although Biological Engineering focused on completely different topics from Chemical Engineering ones, it resorted to the same theoretical tools such as, for instance, mass, energy and momentum balances. Thus, the birth of Biological Engineering may be considered as a Darwinian evolution of Chemical Engineering similar to that experienced by mammals which, returning to water, used legs and arms to swim. From 1960 on, Biological Engineering underwent a considerable evolution as witnessed by the great variety of topics covered such as hemodialysis, release of synthetic drugs, artificial organs and, more recently, delivery of small interfering RNAs (siRNA). This review, based on the activities developed in the frame of our PRIN 2010-11 (20109PLMH2) project, tries to recount origins and evolution of Chemical Engineering illustrating several examples of recent and successful applications in the biological field. This, in turn, may stimulate the discussion about the Chemical Engineering students curriculum studiorum update.


Assuntos
Engenharia Biomédica , Engenharia Química , Animais , Humanos , Preparações Farmacêuticas
17.
J Control Release ; 102(1): 71-83, 2005 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-15653135

RESUMO

The aim of this work was to study the influence of cyclodextrin (CD) incorporation on the properties of protein-loaded poly(lactide-co-glycolide) (PLGA) microspheres, with particular regards to protein release kinetics. To this purpose, insulin-loaded microspheres were prepared by spray-drying emulsion or solution formulations, with or without hydroxypropyl-beta-cyclodextrin (HPbetaCD), and fully characterized for encapsulation efficiency and release kinetics of both insulin and cyclodextrin. Homogeneous populations of spherical microparticles entrapping both insulin and HPbetaCD were obtained. In order to get an insight into insulin/HPbetaCD interactions occurring inside microspheres, Fourier transform infrared (FTIR) analysis in the Amide I region was performed. FTIR spectra of dried microspheres containing HPbetaCD showed a change in insulin secondary structure, attributed to the presence of insulin/HPbetaCD complexes within microspheres. Insulin release was affected by the presence of HPbetaCD depending on the initial formulation conditions. In the case of microspheres prepared from emulsion, cyclodextrin reduced only insulin burst, whereas in the case of microspheres obtained from solution, the overall insulin release rate was slowed down. Combining the release kinetics of HPbetaCD with the FTIR results on hydrated microspheres, it was concluded that the formation of insulin/HPbetaCD complexes inside microspheres is critical to decrease protein diffusivity in the polymer matrix and achieve an effective modulation of protein release rate.


Assuntos
Insulina/química , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Polímeros/química , Proteínas/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Bovinos , Insulina/análise , Ácido Láctico/análise , Ácido Poliglicólico/análise , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros/análise , Proteínas/análise , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/análise
18.
Mater Sci Eng C Mater Biol Appl ; 37: 327-31, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24582256

RESUMO

In this work, blends of alginate/pluronic (F127) for biomedical applications were investigated. In particular, the kinetics of alginate chain reticulation by bivalent cations was studied by experimental and modeling approaches. Two kinds of sodium alginate were tested to obtain hard gel films. The thicknesses of the reticulated alginate films were measured as function of the exposure time and of the reticulating copper (Cu(2+)) solution concentration. The kinetics was described by a proper model able to reproduce the experimental data. The model parameters, evaluated based on the measurements of thicknesses as function of Cu(2+) concentration and exposure time, were further validated by comparing the prediction of the model with another set of independent measurement; here, the depletion of Cu(2+) ions in the conditioning solution above the reacting gel is measured as function of time. The tuned model could be used in the description of the future applications of the blends.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Poloxâmero/química , Cobre/química , Géis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Íons/química , Cinética , Modelos Químicos , Termodinâmica
20.
J Appl Biomater Funct Mater ; 10(3): 237-42, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23242876

RESUMO

PURPOSE: Unidirectional freezing followed by freeze-drying is a way to produce microcellular material from a polymer solution for biomedical application. As a distinctive feature of this type of process, bundles of channels are observed with an average diameter of hundreds of microns. Variations in porous morphology, particularly in porosity, density, and degree of regularity of spatial organization of pores, have been observed when polymer concentrations and quenching temperature are changed. To examine these issues in more detail the thermally induced phase separation of a polycaprolactone/dioxane solution was studied as a function of polymer concentration and quenching temperature in connection with the ultimate morphology of the micro-cellular material. METHODS: We prepared microcellular samples of polycaprolactone by freeze/freeze-drying technique. The microstructure of the material was observed by scanning electron microscopy. Moreover, a mathematical model for the prediction of the temperature profile and morphology was developed. RESULTS AND CONCLUSIONS: A microstructural disorder region inside the samples was sometimes observed in connection with process parameters. The developed model is able to capture the formation of such a microstructural disorder region as a direct consequence of the slowing down of the solid-liquid interface. Predictions of the model as a function of freezing rate and concentration are in excellent agreement with experimental observation.


Assuntos
Dioxanos/química , Modelos Teóricos , Poliésteres/química , Liofilização , Microscopia Eletrônica de Varredura , Porosidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA