Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245822

RESUMO

BACKGROUND: Carbapenemase-producing Enterobacterales (CPE) are challenging in healthcare, with resistance to multiple classes of antibiotics. This study describes the emergence of IMP-encoding CPE amongst diverse Enterobacterales species between 2016 and 2019 across a London regional network. METHODS: We performed a network analysis of patient pathways, using electronic health records, to identify contacts between IMP-encoding CPE positive patients. Genomes of IMP-encoding CPE isolates were overlayed with patient contacts to imply potential transmission events. RESULTS: Genomic analysis of 84 Enterobacterales isolates revealed diverse species (predominantly Klebsiella spp, Enterobacter spp, E. coli); 86% (72/84) harboured an IncHI2 plasmid carrying blaIMP and colistin resistance gene mcr-9 (68/72). Phylogenetic analysis of IncHI2 plasmids identified three lineages showing significant association with patient contacts and movements between four hospital sites and across medical specialities, which was missed on initial investigations. CONCLUSIONS: Combined, our patient network and plasmid analyses demonstrate an interspecies, plasmid-mediated outbreak of blaIMPCPE, which remained unidentified during standard investigations. With DNA sequencing and multi-modal data incorporation, the outbreak investigation approach proposed here provides a framework for real-time identification of key factors causing pathogen spread. Plasmid-level outbreak analysis reveals that resistance spread may be wider than suspected, allowing more interventions to stop transmission within hospital networks.

2.
Antimicrob Agents Chemother ; : e0145623, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651855

RESUMO

Mycobacterium abscessus is an emerging opportunistic pathogen responsible for chronic lung diseases, especially in patients with cystic fibrosis. Treatment failure of M. abscessus infections is primarily associated with intrinsic or acquired antibiotic resistance. However, there is growing evidence that antibiotic tolerance, i.e., the ability of bacteria to transiently survive exposure to bactericidal antibiotics through physiological adaptations, contributes to the relapse of chronic infections and the emergence of acquired drug resistance. Yet, our understanding of the molecular mechanisms that underlie antibiotic tolerance in M. abscessus remains limited. In the present work, a mutant with increased cross-tolerance to the first- and second-line antibiotics cefoxitin and moxifloxacin, respectively, has been isolated by experimental evolution. This mutant harbors a mutation in serB2, a gene involved in L-serine biosynthesis. Metabolic changes caused by this mutation alter the intracellular redox balance to a more reduced state that induces overexpression of the transcriptional regulator WhiB7 during the stationary phase, promoting tolerance through activation of a WhiB7-dependant adaptive stress response. These findings suggest that alteration of amino acid metabolism and, more generally, conditions that trigger whiB7 overexpression, makes M. abscessus more tolerant to antibiotic treatment.

3.
Nucleic Acids Res ; 50(10): 5807-5817, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35609997

RESUMO

Type II toxin-antitoxin (TA) systems are two-gene modules widely distributed among prokaryotes. GNAT toxins associated with the DUF1778 antitoxins represent a large family of type II TAs. GNAT toxins inhibit cell growth by disrupting translation via acetylation of aminoacyl-tRNAs. In this work, we explored the evolutionary trajectory of GNAT toxins. Using LC/MS detection of acetylated aminoacyl-tRNAs combined with ribosome profiling, we systematically investigated the in vivo substrate specificity of an array of diverse GNAT toxins. Our functional data show that the majority of GNAT toxins are specific to Gly-tRNA isoacceptors. However, the phylogenetic analysis shows that the ancestor of GNAT toxins was likely a relaxed specificity enzyme capable of acetylating multiple elongator tRNAs. Together, our data provide a remarkable snapshot of the evolution of substrate specificity.


Assuntos
Antitoxinas , Toxinas Bacterianas , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , Filogenia , RNA de Transferência/genética , Aminoacil-RNA de Transferência/genética , Sistemas Toxina-Antitoxina/genética
4.
J Biol Chem ; 298(8): 102151, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718063

RESUMO

cAMP and antimicrobial susceptibility in mycobacteriaAntimicrobial tolerance, the ability to survive exposure to antimicrobials via transient nonspecific means, promotes the development of antimicrobial resistance (AMR). The study of the molecular mechanisms that result in antimicrobial tolerance is therefore essential for the understanding of AMR. In gram-negative bacteria, the second messenger molecule 3'',5''-cAMP has been previously shown to be involved in AMR. In mycobacteria, however, the role of cAMP in antimicrobial tolerance has been difficult to probe due to its particular complexity. In order to address this difficulty, here, through unbiased biochemical approaches consisting in the fractionation of clear protein lysate from a mycobacterial strain deleted for the known cAMP phosphodiesterase (Rv0805c) combined with mass spectrometry techniques, we identified a novel cyclic nucleotide-degrading phosphodiesterase enzyme (Rv1339) and developed a system to significantly decrease intracellular cAMP levels through plasmid expression of Rv1339 using the constitutive expression system, pVV16. In Mycobacterium smegmatis mc2155, we demonstrate that recombinant expression of Rv1339 reduced cAMP levels threefold and resulted in altered gene expression, impaired bioenergetics, and a disruption in peptidoglycan biosynthesis leading to decreased tolerance to antimicrobials that target cell wall synthesis such as ethambutol, D-cycloserine, and vancomycin. This work increases our understanding of the role of cAMP in mycobacterial antimicrobial tolerance, and our observations suggest that nucleotide signaling may represent a new target for the development of antimicrobial therapies.


Assuntos
Anti-Infecciosos , Farmacorresistência Bacteriana , Mycobacterium smegmatis , Diester Fosfórico Hidrolases , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/efeitos dos fármacos , AMP Cíclico , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo
5.
Eur J Clin Microbiol Infect Dis ; 42(6): 669-679, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36973378

RESUMO

Colistin is a last resort drug for the treatment of multiple drug-resistant (MDR) Gram-negative bacterial infections. Rapid methods to detect resistance are highly desirable. Here, we evaluated the performance of a commercially available MALDI-TOF MS-based assay for colistin resistance testing in Escherichia coli at two different sites. Ninety clinical E. coli isolates were provided by France and tested in Germany and UK using a MALDI-TOF MS-based colistin resistance assay. Lipid A molecules of the bacterial cell membrane were extracted using the MBT Lipid Xtract Kit™ (RUO; Bruker Daltonics, Germany). Spectra acquisition and evaluation were performed by the MBT HT LipidART Module of MBT Compass HT (RUO; Bruker Daltonics) on a MALDI Biotyper® sirius system (Bruker Daltonics) in negative ion mode. Phenotypic colistin resistance was determined by broth microdilution (MICRONAUT MIC-Strip Colistin, Bruker Daltonics) and used as a reference. Comparing the results of the MALDI-TOF MS-based colistin resistance assay with the data of the phenotypic reference method for the UK, sensitivity and specificity for the detection of colistin resistance were 97.1% (33/34) and 96.4% (53/55), respectively. Germany showed 97.1% (33/34) sensitivity and 100% (55/55) specificity for the detection of colistin resistance by MALDI-TOF MS. Applying the MBT Lipid Xtract™ Kit in combination with MALDI-TOF MS and dedicated software showed excellent performances for E. coli. Analytical and clinical validation studies must be performed to demonstrate the performance of the method as a diagnostic tool.


Assuntos
Colistina , Escherichia coli , Humanos , Colistina/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alemanha , França
6.
J Biol Chem ; 296: 100384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556370

RESUMO

UTP-glucose-1-phosphate uridylyltransferases are enzymes that produce UDP-glucose from UTP and glucose-1-phosphate. In Bacillus subtilis 168, UDP-glucose is required for the decoration of wall teichoic acid (WTA) with glucose residues and the formation of glucolipids. The B. subtilis UGPase GtaB is essential for UDP-glucose production under standard aerobic growth conditions, and gtaB mutants display severe growth and morphological defects. However, bioinformatics predictions indicate that two other UTP-glucose-1-phosphate uridylyltransferases are present in B. subtilis. Here, we investigated the function of one of them named YngB. The crystal structure of YngB revealed that the protein has the typical fold and all necessary active site features of a functional UGPase. Furthermore, UGPase activity could be demonstrated in vitro using UTP and glucose-1-phosphate as substrates. Expression of YngB from a synthetic promoter in a B. subtilis gtaB mutant resulted in the reintroduction of glucose residues on WTA and production of glycolipids, demonstrating that the enzyme can function as UGPase in vivo. When WT and mutant B. subtilis strains were grown under anaerobic conditions, YngB-dependent glycolipid production and glucose decorations on WTA could be detected, revealing that YngB is expressed from its native promoter under anaerobic condition. Based on these findings, along with the structure of the operon containing yngB and the transcription factor thought to be required for its expression, we propose that besides WTA, potentially other cell wall components might be decorated with glucose residues during oxygen-limited growth condition.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Glicolipídeos/metabolismo , Ácidos Teicoicos/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Anaerobiose , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Cristalografia por Raios X/métodos , Glicosilação , Regiões Promotoras Genéticas , Ácidos Teicoicos/química , UTP-Glucose-1-Fosfato Uridililtransferase/química , UTP-Glucose-1-Fosfato Uridililtransferase/genética
7.
Mol Syst Biol ; 17(5): e10280, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33943004

RESUMO

The co-catabolism of multiple host-derived carbon substrates is required by Mycobacterium tuberculosis (Mtb) to successfully sustain a tuberculosis infection. However, the metabolic plasticity of this pathogen and the complexity of the metabolic networks present a major obstacle in identifying those nodes most amenable to therapeutic interventions. It is therefore critical that we define the metabolic phenotypes of Mtb in different conditions. We applied metabolic flux analysis using stable isotopes and lipid fingerprinting to investigate the metabolic network of Mtb growing slowly in our steady-state chemostat system. We demonstrate that Mtb efficiently co-metabolises either cholesterol or glycerol, in combination with two-carbon generating substrates without any compartmentalisation of metabolism. We discovered that partitioning of flux between the TCA cycle and the glyoxylate shunt combined with a reversible methyl citrate cycle is the critical metabolic nodes which underlie the nutritional flexibility of Mtb. These findings provide novel insights into the metabolic architecture that affords adaptability of bacteria to divergent carbon substrates and expand our fundamental knowledge about the methyl citrate cycle and the glyoxylate shunt.


Assuntos
Carbono/metabolismo , Colesterol/metabolismo , Glicerol/metabolismo , Mycobacterium tuberculosis/crescimento & desenvolvimento , Técnicas Bacteriológicas , Ciclo do Ácido Cítrico , Glioxilatos/metabolismo , Marcação por Isótopo , Metabolismo dos Lipídeos , Redes e Vias Metabólicas , Mycobacterium tuberculosis/metabolismo , Fenótipo
8.
Microbiology (Reading) ; 167(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723787

RESUMO

Colistin is a polymyxin antibiotic of last resort for the treatment of infections caused by multi-drug-resistant Gram-negative bacteria. By targeting lipopolysaccharide (LPS), the antibiotic disrupts both the outer and cytoplasmic membranes, leading to bacterial death and lysis. Colistin resistance in Escherichia coli occurs via mutations in the chromosome or the acquisition of mobilized colistin-resistance (mcr) genes. Both these colistin-resistance mechanisms result in chemical modifications to the LPS, with positively charged moieties added at the cytoplasmic membrane before the LPS is transported to the outer membrane. We have previously shown that MCR-1-mediated LPS modification protects the cytoplasmic but not the outer membrane from damage caused by colistin, enabling bacterial survival. However, it remains unclear whether this observation extends to colistin resistance conferred by other mcr genes, or resistance due to chromosomal mutations. Using a panel of clinical E. coli that had acquired mcr -1, -1.5, -2, -3, -3.2 or -5, or had acquired polymyxin resistance independently of mcr genes, we found that almost all isolates were susceptible to colistin-mediated permeabilization of the outer, but not cytoplasmic, membrane. Furthermore, we showed that permeabilization of the outer membrane of colistin-resistant isolates by the polymyxin is in turn sufficient to sensitize bacteria to the antibiotic rifampicin, which normally cannot cross the LPS monolayer. These findings demonstrate that colistin resistance in these E. coli isolates is due to protection of the cytoplasmic but not outer membrane from colistin-mediated damage, regardless of the mechanism of resistance.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Plasmídeos , Polimixinas
9.
Adv Exp Med Biol ; 1313: 135-153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34661894

RESUMO

The discovery of penicillin over 90 years ago and its subsequent uptake by healthcare systems around the world revolutionised global health. It marked the beginning of a golden age in antibiotic discovery with new antibiotics readily discovered from natural sources and refined into therapies that saved millions of lives. Towards the end of the last century, the rate of discovery slowed to a near standstill. The lack of discovery is compounded by the rapid emergence and spread of bacterial pathogens that exhibit resistance to multiple antibiotic therapies and threaten the sustainability of global healthcare systems. Acinetobacter baumannii is an opportunistic pathogen whose prevalence and impact has grown significantly over the last 20 years. It is recognised as a barometer of the antibiotic resistance crisis due to the diverse array of mechanisms by which it can become resistant.


Assuntos
Acinetobacter baumannii , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Farmacorresistência Bacteriana Múltipla/genética
10.
J Antimicrob Chemother ; 75(1): 110-116, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31580426

RESUMO

BACKGROUND: With the dissemination of carbapenemase producers, a revival of colistin was observed for the treatment of infections caused by MDR Gram-negatives. Unfortunately, the increasing usage of colistin led to the emergence of resistance. In Klebsiella pneumoniae, colistin resistance arises through addition of 4-amino-l-arabinose (l-Ara4N) or phosphoethanolamine (pEtN) to the native lipid A. The underlying mechanisms involve numerous chromosome-encoded genes or the plasmid-encoded pEtN transferase MCR. Currently, detection of colistin resistance is time-consuming since it still relies on MIC determination by broth microdilution. Recently, a rapid diagnostic test based on MALDI-TOF MS detection of modified lipid A was developed (the MALDIxin test) and tested on Escherichia coli and Acinetobacter baumannii. OBJECTIVES: Optimize the MALDIxin test for the rapid detection of colistin resistance in K. pneumoniae. METHODS: This optimization consists of an additional mild-acid hydrolysis of 15 min in 1% acetic acid. The optimized method was tested on a collection of 81 clinical K. pneumoniae isolates, including 49 colistin-resistant isolates (45 with chromosome-encoded resistance, 3 with MCR-related resistance and 1 with both mechanisms). RESULTS: The optimized method allowed the rapid (<30 min) identification of l-Ara4N- and pEtN-modified lipid A of K. pneumoniae, which are known to be the real triggers of polymyxin resistance. At the same time, it discriminates between chromosome-encoded and MCR-related polymyxin resistance. CONCLUSIONS: The MALDIxin test has the potential to become an accurate tool for the rapid determination of colistin resistance in clinically relevant Gram-negative bacteria.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Klebsiella pneumoniae/efeitos dos fármacos , Lipídeo A/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Testes de Sensibilidade Microbiana
11.
Rapid Commun Mass Spectrom ; 34(22): e8904, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32700347

RESUMO

RATIONALE: Glycosyl-inositol-phospho-ceramides (GIPCs) or glycosylphosphatidylinositol-anchored fungal polysaccharides are known to be major lipids in plant and fungal plasma membranes and to play an important role in stress adaption. However, their analysis remains challenging due to the several steps involved for their extractions and purifications prior to mass spectrometric analysis. To address this challenge, we developed a rapid and sensitive method to identify GIPCs from the four common fungal plant pathogens Botrytis cinerea, Fusarium graminearium, Neurospora crassa and Ustilago maydis. METHODS: Fungal plant pathogens were cultured, harvested, heat-inactivated and washed three times with double-distilled water. Intact fungi were deposited on a matrix-assisted laser desorption ionization (MALDI) target plate, mixed with the matrix consisting of a 9:1 mixture of 2,5-dihydroxybenzoic acid and 2-hydroxy-5-methoxybenzoic acid solubilized at 10 mg/mL in chloroform-methanol (9:1 v/v) and analyzed using a Bruker MALDI Biotyper Sirius system in the linear negative ion mode. Mass spectra were acquired from m/z 700 to 2000. RESULTS: MALDI time-of-flight (TOF) mass spectrometric analysis of cultured fungi showed clear signature of GIPCs in B. cinerea, F. graminearium, N. crassa and U. maydis. CONCLUSIONS: We have demonstrated that routine MALDI-TOF in the linear negative ion mode combined with an apolar solvent system to solubilize the matrix is applicable to the detection of filamentous fungal GIPCs.


Assuntos
Ceramidas/análise , Fungos/química , Glicosilfosfatidilinositóis/análise , Plantas/microbiologia , Técnicas de Tipagem Micológica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
J Clin Microbiol ; 57(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597744

RESUMO

Polymyxin antibiotics are a last-line treatment for multidrug-resistant Gram-negative bacteria. However, the emergence of colistin resistance, including the spread of mobile mcr genes, necessitates the development of improved diagnostics for the detection of colistin-resistant organisms in hospital settings. The recently developed MALDIxin test enables detection of colistin resistance by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in less than 15 min but is not optimized for the mass spectrometers commonly found in clinical microbiology laboratories. In this study, we adapted the MALDIxin test for the MALDI Biotyper Sirius MALDI-TOF MS system (Bruker Daltonics). We optimized the sample preparation protocol by using a set of 6 mobile colistin resistance (MCR) protein-expressing Escherichia coli clones and validated the assay with a collection of 40 E. coli clinical isolates, including 19 confirmed MCR protein producers, 12 colistin-resistant isolates that tested negative for commonly encountered mcr genes (i.e., likely chromosomally resistant isolates), and 9 polymyxin-susceptible isolates. We calculated polymyxin resistance ratio (PRR) values from the acquired spectra; PRR values of 0, indicating polymyxin susceptibility, were obtained for all colistin-susceptible E. coli isolates, whereas positive PRR values, indicating resistance to polymyxins, were obtained for all resistant strains, independent of the genetic basis of resistance. Thus, we report a preliminary feasibility study showing that an optimized version of the MALDIxin test adapted for the routine MALDI Biotyper Sirius system provides an unbiased, fast, reliable, cost-effective, and high-throughput way of detecting colistin resistance in clinical E. coli isolates.


Assuntos
Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia
13.
J Antimicrob Chemother ; 74(9): 2544-2550, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199431

RESUMO

BACKGROUND: Colistin resistance in Acinetobacter baumannii often results from mutational activation of the two-component system PmrAB and subsequent addition of phospho-ethanolamine (pEtN) to lipooligosaccharide by up-regulated pEtN transferase PmrC. OBJECTIVES: To characterize mechanisms of colistin resistance independent of PmrCAB in A. baumannii. METHODS: Twenty-seven colistin-resistant A. baumannii were collected from 2012 to 2018. Analysis of operon pmrCAB was performed by PCR and sequencing. Seven strains were investigated further by WGS and whole-genome MLST (wgMLST). RESULTS: Seven out of the 27 selected isolates were found to overexpress eptA, a gene homologous to pmrC, likely as a consequence of upstream insertion of an ISAba1 element. Insertion sites of ISAba1 were mapped 13, 18 and 156 bp ahead of the start codon of eptA in five strains, one strain and one strain, respectively. The finding that the isolates did not cluster together when compared by wgMLST analysis supports the notion that distinct insertion events occurred in close, but different, genetic backgrounds. CONCLUSIONS: Activation of eptA and subsequent addition of pEtN to the cell surface represents a novel mechanism of resistance to colistin in A. baumannii.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Colistina/farmacologia , Farmacorresistência Bacteriana/genética , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óperon/genética , Fatores de Transcrição/genética , Sequenciamento Completo do Genoma
14.
J Antimicrob Chemother ; 73(12): 3359-3367, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184212

RESUMO

Background: Polymyxins are currently considered a last-resort treatment for infections caused by MDR Gram-negative bacteria. Recently, the emergence of carbapenemase-producing Enterobacteriaceae has accelerated the use of polymyxins in the clinic, resulting in an increase in polymyxin-resistant bacteria. Polymyxin resistance arises through modification of lipid A, such as the addition of phosphoethanolamine (pETN). The underlying mechanisms involve numerous chromosome-encoded genes or, more worryingly, a plasmid-encoded pETN transferase named MCR. Currently, detection of polymyxin resistance is difficult and time consuming. Objectives: To develop a rapid diagnostic test that can identify polymyxin resistance and at the same time differentiate between chromosome- and plasmid-encoded resistances. Methods: We developed a MALDI-TOF MS-based method, named the MALDIxin test, which allows the detection of polymyxin resistance-related modifications to lipid A (i.e. pETN addition), on intact bacteria, in <15 min. Results: Using a characterized collection of polymyxin-susceptible and -resistant Escherichia coli, we demonstrated that our method is able to identify polymyxin-resistant isolates in 15 min whilst simultaneously discriminating between chromosome- and plasmid-encoded resistance. We validated the MALDIxin test on different media, using fresh and aged colonies and show that it successfully detects all MCR-1 producers in a blindly analysed set of carbapenemase-producing E. coli strains. Conclusions: The MALDIxin test is an accurate, rapid, cost-effective and scalable method that represents a major advance in the diagnosis of polymyxin resistance by directly assessing lipid A modifications in intact bacteria.


Assuntos
Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Polimixinas/farmacologia , Proteínas de Escherichia coli/genética , Lipídeo A/genética , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
15.
Chem Res Toxicol ; 31(8): 688-696, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29947513

RESUMO

Antimicrobial resistance is a major threat the world is currently facing. Development of new antibiotics and the assessment of their toxicity represent important challenges. Current methods for addressing antibiotic toxicity rely on measuring mitochondrial damage using ATP and/or membrane potential as a readout. In this study, we propose an alternative readout looking at changes in the lipidome on intact and unprocessed cells by matrix-assisted laser desorption ionization mass spectrometry. As a proof of principle, we evaluated the impact of known antibiotics (levofloxacin, ethambutol, and kanamycin) on the lipidome of HeLa cells and mouse bone marrow-derived macrophages. Our methodology revealed that clinically relevant concentrations of kanamycin alter the ratio of cardiolipins to phosphatidylinositols. Unexpectedly, only kanamycin had this effect even though all antibiotics used in this study led to a decrease in the maximal mitochondrial respiratory capacity. Altogether, we report that intact cell-targeted lipidomics can be used as a qualitative method to rapidly assess the toxicity of aminoglycosides in HeLa and primary cells. Moreover, these results demonstrate there is no direct correlation between the ratio of cardiolipins to phosphatidylinositols and the maximal mitochondrial respiratory capacity.


Assuntos
Antibacterianos/farmacologia , Cardiolipinas/metabolismo , Canamicina/farmacologia , Fosfatidilinositóis/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antibacterianos/administração & dosagem , Relação Dose-Resposta a Droga , Etambutol/farmacologia , Células HeLa , Humanos , Canamicina/administração & dosagem , Levofloxacino/farmacologia , Metabolismo dos Lipídeos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
EMBO Rep ; 17(7): 1029-43, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259462

RESUMO

Septins, cytoskeletal proteins with well-characterised roles in cytokinesis, form cage-like structures around cytosolic Shigella flexneri and promote their targeting to autophagosomes. However, the processes underlying septin cage assembly, and whether they influence S. flexneri proliferation, remain to be established. Using single-cell analysis, we show that the septin cages inhibit S. flexneri proliferation. To study mechanisms of septin cage assembly, we used proteomics and found mitochondrial proteins associate with septins in S. flexneri-infected cells. Strikingly, mitochondria associated with S. flexneri promote septin assembly into cages that entrap bacteria for autophagy. We demonstrate that the cytosolic GTPase dynamin-related protein 1 (Drp1) interacts with septins to enhance mitochondrial fission. To avoid autophagy, actin-polymerising Shigella fragment mitochondria to escape from septin caging. Our results demonstrate a role for mitochondria in anti-Shigella autophagy and uncover a fundamental link between septin assembly and mitochondria.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Septinas/metabolismo , Shigella/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Ligação Proteica
18.
PLoS Pathog ; 10(2): e1003928, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586151

RESUMO

Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.


Assuntos
Asparagina/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Nitrogênio/metabolismo , Fagossomos/metabolismo , Estresse Fisiológico , Tuberculose/metabolismo , Animais , Cromatografia Líquida , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Técnicas de Inativação de Genes , Immunoblotting , Espectrometria de Massas , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Microscopia Imunoeletrônica , Fagossomos/microbiologia
19.
EMBO Rep ; 15(6): 657-69, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24829223

RESUMO

Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources.


Assuntos
Enzimas/metabolismo , Espectrometria de Massas/métodos , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos , Anotação de Sequência Molecular/métodos , Enzimas/genética , Perfilação da Expressão Gênica/métodos , Marcação por Isótopo/métodos , Espectrometria de Massas/tendências , Redes e Vias Metabólicas/genética , Metabolômica/tendências
20.
Proc Natl Acad Sci U S A ; 110(28): 11320-5, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23801751

RESUMO

Functional assignment of enzymes encoded by the Mycobacterium tuberculosis genome is largely incomplete despite recent advances in genomics and bioinformatics. Here, we applied an activity-based metabolomic profiling method to assign function to a unique phosphatase, Rv1692. In contrast to its annotation as a nucleotide phosphatase, metabolomic profiling and kinetic characterization indicate that Rv1692 is a D,L-glycerol 3-phosphate phosphatase. Crystal structures of Rv1692 reveal a unique architecture, a fusion of a predicted haloacid dehalogenase fold with a previously unidentified GCN5-related N-acetyltransferase region. Although not directly involved in acetyl transfer, or regulation of enzymatic activity in vitro, this GCN5-related N-acetyltransferase region is critical for the solubility of the phosphatase. Structural and biochemical analysis shows that the active site features are adapted for recognition of small polyol phosphates, and not nucleotide substrates. Functional assignment and metabolomic studies of M. tuberculosis lacking rv1692 demonstrate that Rv1692 is the final enzyme involved in glycerophospholipid recycling/catabolism, a pathway not previously described in M. tuberculosis.


Assuntos
Glicerofosfolipídeos/metabolismo , Mycobacterium tuberculosis/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Domínio Catalítico , Modelos Moleculares , Monoéster Fosfórico Hidrolases/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA