Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
2.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877837

RESUMO

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança Climática
3.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
4.
Ecol Appl ; 31(3): e2274, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33617144

RESUMO

Warming-induced mountain pine beetle (Dendroctonus ponderosae; MPB) outbreaks have caused extensive mortality of whitebark pine (Pinus albicaulis; WBP) throughout the species' range. In the highest mountains where WBP occur, they cross alpine treeline ecotones (ATEs) where growth forms transition from trees to shrub-like krummholz, some of which survived recent MPB outbreaks. This observation motivated the hypothesis that ATEs are refugia for WBP because krummholz growth forms escape MPB attack and have the potential to produce viable seed. To test this hypothesis, we surveyed WBP mortality along transects from the ATE edge (locally highest krummholz WBP) downslope into the forest and, to distinguish if survival mechanisms are unique to ATEs, across other forest ecotones (OFEs) from the edge of WBP occurrence into the forest. We replicated this design at 10 randomly selected sites in the U.S. Northern Rocky Mountains. We also surveyed reproduction in a subset of ATE sites. Mortality was nearly absent in upper ATEs (mean ± SE percent dead across all sites of 0.03% ± 0.03% 0-100 m from the edge and 14.1% ± 1.7% 100-500 m from the edge) but was above 20% along OFEs (21.4 ± 5.2% 0-100 m and 32.4 ± 2.7% 100-500 m from the edge). We observed lower reproduction in upper ATEs (16 ± 9.9 cones/ha and 12.9 ± 5.3 viable seeds/cone 0-100 m from the edge) compared to forests below (317.1 ± 64.4 cones/ha and 32.5 ± 2.5 viable seeds/cone 100-500 m from the edge). Uniquely high WBP survival supports the hypothesis that ATEs serve as refugia because krummholz growth forms escape MPB attack. However, low reproduction suggests ATE refugia function over longer time periods. Beyond our WBP system, we propose that plant populations in marginal environments are candidate refugia if distinct phenotypes result in reduced disturbance impacts.


Assuntos
Besouros , Pinus , Animais , Surtos de Doenças , Casca de Planta , Refúgio de Vida Selvagem
5.
Eur Respir J ; 56(5)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32499336

RESUMO

BACKGROUND: Thoracentesis using suction is perceived to have increased risk of complications, including pneumothorax and re-expansion pulmonary oedema (REPO). Current guidelines recommend limiting drainage to 1.5 L to avoid REPO. Our purpose was to examine the incidence of complications with symptom-limited drainage of pleural fluid using suction and identify risk factors for REPO. METHODS: A retrospective cohort study of all adult patients who underwent symptom-limited thoracentesis using suction at our institution between January 1, 2004 and August 31, 2018 was performed, and a total of 10 344 thoracenteses were included. RESULTS: Pleural fluid ≥1.5 L was removed in 19% of the procedures. Thoracentesis was stopped due to chest discomfort (39%), complete drainage of fluid (37%) and persistent cough (13%). Pneumothorax based on chest radiography was detected in 3.98%, but only 0.28% required intervention. The incidence of REPO was 0.08%. The incidence of REPO increased with Eastern Cooperative Oncology Group performance status (ECOG PS) ≥3 compounded with ≥1.5 L (0.04-0.54%; 95% CI 0.13-2.06 L). Thoracentesis in those with ipsilateral mediastinal shift did not increase complications, but less fluid was removed (p<0.01). CONCLUSIONS: Symptom-limited thoracentesis using suction is safe even with large volumes. Pneumothorax requiring intervention and REPO are both rare. There were no increased procedural complications in those with ipsilateral mediastinal shift. REPO increased with poor ECOG PS and drainage ≥1.5 L. Symptom-limited drainage using suction without pleural manometry is safe.


Assuntos
Derrame Pleural , Pneumotórax , Adulto , Drenagem , Humanos , Derrame Pleural/epidemiologia , Derrame Pleural/etiologia , Derrame Pleural/terapia , Pneumotórax/epidemiologia , Pneumotórax/etiologia , Pneumotórax/terapia , Estudos Retrospectivos , Sucção , Toracentese
6.
Ecol Appl ; 30(2): e02023, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31628705

RESUMO

In the western United States, restoration of forests with historically frequent, low-severity fire regimes often includes fuel reduction that reestablish open, early-seral conditions while reducing fuel continuity and loading. Between 2001 and 2016, fuel reduction (e.g., thinning, prescribed burning, etc.) was implemented on over 26 million hectares of federal lands alone in the United States, reflecting the urgency to mitigate risk from high-severity wildfire. However, between 2001 and 2012, nearly 20 million hectares in the United States were impacted by mountain pine beetle (MPB; Dendroctonus ponderosae), compounding restoration effects in wildfire-hazard-treated stands. Knowledge of the effects of treatments followed by natural disturbance on long-term forest structure and communities is needed, especially considering that fuel treatments are increasingly being implemented and warming climate is predicted to exacerbate disturbance frequency and severity. We tested the interacting effects of treatments designed to reduce high-severity wildfire hazard in stands subsequently challenged by MPB outbreak on vegetation dynamics using a factorial experimental design (control, thin only, burn only, thin + burn) in a ponderosa pine (Pinus ponderosa)-dominated forest. Stands were treated by 2002, then impacted by MPB outbreak from 2005 to 2012. We assessed change in overstory and understory forest community structure, composition, and diversity over time. There were distinct thinning, burning, and year effects. Thinning immediately reduced overstory density; pine density then declined 4.5 times more in unthinned than thinned treatments due to MPB. Burning immediately reduced graminoid, shrub, and total understory cover by as much as 52%, resulting in greater species evenness than unburned treatments, but differences disappeared by 2016 due to growth and MPB outbreak. Similarly, multivariate analyses indicated forest communities were starkly different after treatment but became more similar over time, though key understory and overstory attributes still distinguish control and thin + burn. This study shows the value of long-term silvicultural experiments to evaluate treatment longevity and the compounded effects of treatment and natural disturbance. We demonstrate the homogenizing effects of treatment-induced growth coupled with MPB-caused tree mortality on management strategies that just treat the overstory (thinning) or understory (burning), showing that only combined treatments can provide the unique structural and compositional outcomes expected of restoration.


Assuntos
Besouros , Incêndios , Pinus , Animais , Surtos de Doenças , Florestas , Casca de Planta
7.
Glob Chang Biol ; 25(11): 3985-3994, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31148284

RESUMO

Wildfire is an essential earth-system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO2 ) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed. This misconception is also reflected though excessive combustion of live trees in models. Here, we show that regional emissions estimates using widely implemented combustion coefficients are 59%-83% higher than emissions based on field observations. Using unique field datasets from before and after wildfires and an improved ecosystem model, we provide strong evidence that these large overestimates can be reduced by using realistic biomass combustion factors and by accurately quantifying biomass in standing dead trees that decompose over decades to centuries after fire ("snags"). Most model development focuses on area burned; our results reveal that accurately representing combustion is also essential for quantifying fire impacts on ecosystems. Using our improvements, we find that western US forest fires have emitted 851 ± 228 Tg CO2 (~half of alternative estimates) over the last 17 years, which is minor compared to 16,200 Tg CO2 from fossil fuels across the region.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , Árvores
8.
Mult Scler ; 23(2): 297-299, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28165320

RESUMO

BACKGROUND: Fingolimod is an oral disease-modifying therapy for relapsing forms of multiple sclerosis, which acts by sequestering lymphocytes within lymph nodes. OBJECTIVE: To describe a case of extrapulmonary cryptococcosis in a patient taking fingolimod. METHODS: Case report. RESULTS: A 47-year-old man developed a non-healing skin lesion approximately 16 months after starting treatment with fingolimod. Biopsy revealed cryptococcosis. Fingolimod was discontinued and the lesion resolved with antifungal therapy. CONCLUSION: Despite few reported opportunistic infections in the pivotal clinical trials and first few years post-marketing, there has been a recent increase in reported AIDS-defining illnesses in patients taking fingolimod. Neurologists should be alert for opportunistic infections in their patients using this medication.


Assuntos
Criptococose/tratamento farmacológico , Cloridrato de Fingolimode/uso terapêutico , Imunossupressores/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Infecções Oportunistas/tratamento farmacológico , Adulto , Criptococose/diagnóstico , Cloridrato de Fingolimode/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Infecções Oportunistas/diagnóstico , Recidiva
9.
Ecol Appl ; 27(5): 1498-1513, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370925

RESUMO

Historical forest conditions are often used to inform contemporary management goals because historical forests are considered to be resilient to ecological disturbances. The General Land Office (GLO) surveys of the late 19th and early 20th centuries provide regionally quasi-contiguous data sets of historical forests across much of the Western United States. Multiple methods exist for estimating tree density from point-based sampling such as the GLO surveys, including distance-based and area-based approaches. Area-based approaches have been applied in California mixed-conifer forests but their estimates have not been validated. To assess the accuracy and precision of plotless density estimators with potential for application to GLO data in this region, we imposed a GLO sampling scheme on six mapped forest stands of known densities (159-784 trees/ha) in the Sierra Nevada in California, USA, and Baja California Norte, Mexico. We compared three distance-based plotless density estimators (Cottam, Pollard, and Morisita) as well as two Voronoi area (VA) estimators, the Delincé and mean harmonic Voronoi density (MHVD), to the true densities. We simulated sampling schemes of increasing intensity to assess sampling error. The relative error (RE) of density estimates for the GLO sampling scheme ranged from 0.36 to 4.78. The least biased estimate of tree density in every stand was obtained with the Morisita estimator and the most biased was obtained with the MHVD estimator. The MHVD estimates of tree density were 1.2-3.8 times larger than the true densities and performed best in stands subject to fire exclusion for 100 yr. The Delincé approach obtained accurate estimates of density, implying that the Voronoi approach is theoretically sound but that its application in the MHVD was flawed. The misapplication was attributed to two causes: (1) the use of a crown scaling factor that does not correct for the number of trees sampled and (2) the persistent underestimate of the true VA due to a weak relationship between tree size and VA. The magnitude of differences between true densities and MHVD estimates suggest caution in using results based on the MHVD to inform management and restoration practices in the conifer forests of the American West.


Assuntos
Agricultura Florestal/métodos , Florestas , Árvores/fisiologia , California , México , Modelos Biológicos , Modelos Estatísticos , Densidade Demográfica
10.
Ecology ; 96(11): 2855-61, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27070005

RESUMO

Rates and spatial patterns of tree mortality are predicted to change during forest structural development. In young forests, mortality should be primarily density dependent due to competition for light, leading to an increasingly spatially uniform pattern of surviving trees. In contrast, mortality in old-growth forests should be primarily caused by contagious and spatially autocorrelated agents (e.g., insects, wind), causing spatial aggregation of surviving trees to increase through time. We tested these predictions by contrasting a three-decade record of tree mortality from replicated mapped permanent plots located in young (< 60-year-old) and old-growth (> 300-year-old) Abies amabilis forests. Trees in young forests died at a rate of 4.42% per year, whereas trees in old-growth forests died at 0.60% per year. Tree mortality in young forests was significantly aggregated, strongly density dependent, and caused live tree patterns to become more uniform through time. Mortality in old-growth forests was spatially aggregated, but was density independent and did not change the spatial pattern of surviving trees. These results extend current theory by demonstrating that density-dependent competitive mortality leading to increasingly uniform tree spacing in young forests ultimately transitions late in succession to a more diverse tree mortality regime that maintains spatial heterogeneity through time.


Assuntos
Abies/fisiologia , Florestas , Longevidade/fisiologia , Árvores/fisiologia , Densidade Demográfica
11.
Ecology ; 95(8): 2047-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25230456

RESUMO

Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P < 0.001). Density-dependent competitive interactions strongly shape forest communities even five centuries after stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.


Assuntos
Pseudotsuga/fisiologia , Árvores/fisiologia , Tsuga/fisiologia , Ecossistema , Modelos Biológicos
13.
Nat Commun ; 15(1): 2412, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528012

RESUMO

Fire suppression is the primary management response to wildfires in many areas globally. By removing less-extreme wildfires, this approach ensures that remaining wildfires burn under more extreme conditions. Here, we term this the "suppression bias" and use a simulation model to highlight how this bias fundamentally impacts wildfire activity, independent of fuel accumulation and climate change. We illustrate how attempting to suppress all wildfires necessarily means that fires will burn with more severe and less diverse ecological impacts, with burned area increasing at faster rates than expected from fuel accumulation or climate change. Over a human lifespan, the modeled impacts of the suppression bias exceed those from fuel accumulation or climate change alone, suggesting that suppression may exert a significant and underappreciated influence on patterns of fire globally. Managing wildfires to safely burn under low and moderate conditions is thus a critical tool to address the growing wildfire crisis.

14.
Ecol Appl ; 23(6): 1243-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24147398

RESUMO

Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.


Assuntos
Ecossistema , Incêndios , Pinus/fisiologia , Árvores , Dinâmica Populacional
15.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857800

RESUMO

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Assuntos
Micorrizas , Retroalimentação , Simbiose , Plantas/microbiologia , Solo
16.
Nat Commun ; 12(1): 3137, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035260

RESUMO

Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.


Assuntos
Biodiversidade , Florestas , Micorrizas/fisiologia , Árvores/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Dispersão Vegetal , Microbiologia do Solo , Árvores/microbiologia
17.
Ecol Appl ; 18(4): 899-910, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18536251

RESUMO

Development and maintenance of structurally complex forests in landscapes formerly managed for timber production is an increasingly common management objective. It has been postulated that the rate of forest structural development increases with site productivity. We tested this hypothesis for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests using a network of permanent study plots established following complete timber harvest of the original old-growth forests. Forest structural development was assessed by comparing empirical measures of live tree structure to published values for Douglas-fir forests spanning a range of ages and structural conditions. The rate of forest structural development--resilience--exhibited a positive relationship with site index, a measure of potential site productivity. Density of shade-intolerant conifers declined in all study stands from an initial range of 336-4068 trees/ha to a range of 168-642 trees/ha at the most recent measurement. Angiosperm tree species declined from an initial range of 40-371 trees/ha to zero in seven of the nine plots in which they were present. Trends in shade-tolerant tree density were complex: density ranged from 0 to 575 trees/ha at the first measurement and was still highly variable (25-389 trees/ha) at the most recent measurement. Multivariate analysis identified the abundance of hardwood tree species as the strongest compositional trend apparent over the study period. However, structural variables showed a strong positive association with increasing shade-tolerant basal area and little or no association with abundance of hardwood species. Thus, while tree species succession and forest structural development occur contemporaneously, they are not equivalent processes, and their respective rates are not necessarily linearly related. The results of this study support the idea that silvicultural treatments to accelerate forest structural development should be concentrated on lower productivity sites when the management objective is reserve-wide coverage of structurally complex forests. Alternatively, high-productivity sites should be prioritized for restoration treatments when the management objective is to develop structurally complex forests on a portion of the landscape.


Assuntos
Ecossistema , Pseudotsuga/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Washington
18.
Science ; 360(6391)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798853

RESUMO

Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings-(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance-persist even after controlling for other processes that might influence spatial relationships between adults and recruits.


Assuntos
Biodiversidade , Árvores , Densidade Demográfica , Plântula
19.
Science ; 360(6391)2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29798855

RESUMO

Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.


Assuntos
Biodiversidade , Árvores , Ecossistema , Plântula
20.
Science ; 356(6345): 1389-1392, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28663501

RESUMO

Theory predicts that higher biodiversity in the tropics is maintained by specialized interactions among plants and their natural enemies that result in conspecific negative density dependence (CNDD). By using more than 3000 species and nearly 2.4 million trees across 24 forest plots worldwide, we show that global patterns in tree species diversity reflect not only stronger CNDD at tropical versus temperate latitudes but also a latitudinal shift in the relationship between CNDD and species abundance. CNDD was stronger for rare species at tropical versus temperate latitudes, potentially causing the persistence of greater numbers of rare species in the tropics. Our study reveals fundamental differences in the nature of local-scale biotic interactions that contribute to the maintenance of species diversity across temperate and tropical communities.


Assuntos
Biodiversidade , Árvores/classificação , Antibiose , Ecossistema , Florestas , Geografia , Modelos Biológicos , Árvores/fisiologia , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA