Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 613(7945): 682-688, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653452

RESUMO

Helical structures are ubiquitous in nature and impart unique mechanical properties and multifunctionality1. So far, synthetic architectures that mimic these natural systems have been fabricated by winding, twisting and braiding of individual filaments1-7, microfluidics8,9, self-shaping1,10-13 and printing methods14-17. However, those fabrication methods are unable to simultaneously create and pattern multimaterial, helically architected filaments with subvoxel control in arbitrary two-dimensional (2D) and three-dimensional (3D) motifs from a broad range of materials. Towards this goal, both multimaterial18-23 and rotational24 3D printing of architected filaments have recently been reported; however, the integration of these two capabilities has yet to be realized. Here we report a rotational multimaterial 3D printing (RM-3DP) platform that enables subvoxel control over the local orientation of azimuthally heterogeneous architected filaments. By continuously rotating a multimaterial nozzle with a controlled ratio of angular-to-translational velocity, we have created helical filaments with programmable helix angle, layer thickness and interfacial area between several materials within a given cylindrical voxel. Using this integrated method, we have fabricated functional artificial muscles composed of helical dielectric elastomer actuators with high fidelity and individually addressable conductive helical channels embedded within a dielectric elastomer matrix. We have also fabricated hierarchical lattices comprising architected helical struts containing stiff springs within a compliant matrix. Our additive-manufacturing platform opens new avenues to generating multifunctional architected matter in bioinspired motifs.


Assuntos
Órgãos Artificiais , Materiais Biomiméticos , Biomimética , Elastômeros/química , Condutividade Elétrica , Impressão Tridimensional , Biomimética/métodos , Materiais Biomiméticos/química , Rotação , Músculos/química
2.
J Synchrotron Radiat ; 24(Pt 5): 1065-1077, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862630

RESUMO

Three-dimensional (3D) micro-tomography (µ-CT) has proven to be an important imaging modality in industry and scientific domains. Understanding the properties of material structure and behavior has produced many scientific advances. An important component of the 3D µ-CT pipeline is image partitioning (or image segmentation), a step that is used to separate various phases or components in an image. Image partitioning schemes require specific rules for different scientific fields, but a common strategy consists of devising metrics to quantify performance and accuracy. The present article proposes a set of protocols to systematically analyze and compare the results of unsupervised classification methods used for segmentation of synchrotron-based data. The proposed dataflow for Materials Segmentation and Metrics (MSM) provides 3D micro-tomography image segmentation algorithms, such as statistical region merging (SRM), k-means algorithm and parallel Markov random field (PMRF), while offering different metrics to evaluate segmentation quality, confidence and conformity with standards. Both experimental and synthetic data are assessed, illustrating quantitative results through the MSM dashboard, which can return sample information such as media porosity and permeability. The main contributions of this work are: (i) to deliver tools to improve material design and quality control; (ii) to provide datasets for benchmarking and reproducibility; (iii) to yield good practices in the absence of standards or ground-truth for ceramic composite analysis.

3.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224289

RESUMO

Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.


Assuntos
Pró-Proteína Convertase 9 , Transdução de Sinais , Humanos , Animais , Camundongos , Homeostase , Adiposidade
4.
Sci Adv ; 8(28): eabn9198, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857528

RESUMO

Dielectric elastomer actuators (DEAs) are among the fastest and most energy-efficient, shape-morphing materials. To date, their shapes have been controlled using patterned electrodes or stiffening elements. While their actuated shapes can be analyzed for prescribed configurations of electrodes or stiffening elements (the forward problem), the design of DEAs that morph into target shapes (the inverse problem) has not been fully addressed. Here, we report a simple analytical solution for the inverse design and fabrication of programmable shape-morphing DEAs. To realize the target shape, two mechanisms are combined to locally control the actuation magnitude and direction by patterning the number of local active layers and stiff rings of varying shapes, respectively. Our combined design and fabrication strategy enables the creation of complex DEA architectures that shape-morph into simple target shapes, for instance, those with zero, positive, and negative Gaussian curvatures as well as complex shapes, such as a face.

6.
J Am Acad Nurse Pract ; 23(8): 392-403, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21790832

RESUMO

PURPOSE: The purpose of this article is to discuss the role of the primary care provider in the detection of and referral for early onset scoliosis. An overview of scoliosis including etiology, natural history, guidelines for physical examination, current practice for scoliosis screening, and available treatments will be discussed. DATA SOURCES: PubMed, OVID Medline, Psychinfo. Search terms: juvenile scoliosis, childhood onset scoliosis, early onset scoliosis, idiopathic scoliosis, and infantile scoliosis. CONCLUSIONS: Scoliosis is classified depending on the magnitude, location, direction, and cause of the curve, and can lead to a variety of health effects if not treated. The greater the scoliosis curve and the earlier it presents, the more likely it may affect thoracic growth, inhibit cardiopulmonary function, and cause psychosocial distress. IMPLICATIONS FOR PRACTICE: Routine scoliosis screening should be incorporated into each healthcare maintenance visit beginning in infancy and continue into adolescence until the child reaches skeletal maturity. Curves with a scoliometer reading greater than 5° should be referred, and conservative treatment should be considered for curves that surpass 20°. If scoliosis is detected early, it may be possible to stabilize the curve from progressing and even prevent thoracic deformity and secondary complications from occurring.


Assuntos
Programas de Rastreamento , Médicos de Atenção Primária , Atenção Primária à Saúde , Escoliose/diagnóstico , Fatores Etários , Progressão da Doença , Humanos , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/patologia , Ortopedia , Escoliose/patologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA