Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(6): 2415-2422, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36716128

RESUMO

Iron oxyhydroxide nanoparticle reactivity has been widely investigated, yet little is still known on how particle aggregation controls the mobility and transport of environmental compounds. Here, we examine how aggregates of goethite (α-FeOOH) nanoparticle deposited on 100-300 µm quartz particles (GagCS) alter the transport of two emerging contaminants and two naturally occurring inorganic ligands-silicates and phosphates. Bromide tracer experiments showed no water fractionation into mobile and immobile water zones in an individual goethite-coated sand (GCS) column, whereas around 10% of the total water was immobile in a GagCS column. Reactive compounds were, in contrast, considerably more mobile and affected by diffusion-limited processes. A new simulation approach coupling the mobile-immobile equation with surface complexation reactions to surface reactive sites suggests that ∼90% of the binding sites were likely within the intra-aggregate zones, and that the mass transfer between mobile and immobile fractions was the rate-limited step. The diffusion-controlled processes also affected synergetic and competitive binding, which have otherwise been observed for organic and inorganic compounds at goethite surfaces. These results thereby call for more attention on transport studies, where tracer or conservative tests are often used to describe the reactive transport of environmentally relevant molecules.


Assuntos
Compostos de Ferro , Minerais , Compostos de Ferro/química , Simulação por Computador , Difusão
2.
Environ Sci Technol ; 53(17): 10102-10109, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31408603

RESUMO

The mobility of pharmaceuticals in environmental systems is under great scrutiny in the scientific literature and in the press. Still, very few reports have focused on redox-driven transformations when these compounds are bound to mineral surfaces, and how their transport is affected under flow-through conditions. In this study, we examined the adsorption and electron transfer reactions of ciprofloxacin (CIP) in a dynamic column containing nanosized hematite (α-Fe2O3). CIP binding and the subsequent redox transformation were strongly dependent on inflow pH and residence time. These reactions could be predicted using transport models that account for adsorption and transformation kinetics. Our results show that flow interruption over a 16 h period triggers oxidation of hematite-bound CIP into byproducts. These reactions are likely facilitated by inner-sphere iron-CIP complexes formed via the sluggish conversion from outer-sphere complexes during interrupted flow. When intermittent flow/no-flow conditions were applied sequentially, a second byproduct was detected in the column effluent. This work sheds light on a much overseen aspect of redox transformations of antibiotics under flow-through conditions. It has important implications in adequately predicting transport, and in developing risk assessments of these emerging compounds in the environment.


Assuntos
Ciprofloxacina , Compostos Férricos , Adsorção , Oxirredução
3.
Environ Sci Technol ; 49(16): 9936-44, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26214709

RESUMO

Infiltration systems are increasingly used in urban areas for groundwater recharge. The reduction of sediment permeability by physical and/or biological processes is a major problem in management of infiltration systems often requiring expensive engineering operations for hydraulic performance maintenance. To reduce these costs and for the sake of sustainable development, we proposed to evaluate the ability of ecological engineering approaches to reduce the biological clogging of infiltration basins. A 36-day field-scale experiment using enclosures was performed to test the influences of abiotic (light reduction by shading) and biotic (introduction of the macrophyte Vallisneria spiralis (L.) or the gastropod Viviparus viviparus (Linnaeus, 1758)) treatments to limit benthic biofilm biomass and to maintain or even increase hydraulic performances. We coupled biological characterization of sediment (algal biomass, bacterial abundance, total organic carbon, total nitrogen, microbial enzymatic activity, photosynthetic activity, and photosystem II efficiency) with hydraulic conductivity measurements to assess the effects of treatments on sediment permeability. The grazer Viviparus viviparus significantly reduced benthic biofilm biomass and enhanced hydraulic conductivity. The other treatments did not produce significant changes in hydraulic conductivity although Vallisneria spiralis affected photosynthetic activity of biofilm. Finally, our results obtained with Viviparus viviparus are promising for the development of ecological engineering solutions to prevent biological fouling in infiltration systems.


Assuntos
Ecologia/métodos , Recuperação e Remediação Ambiental/métodos , Água Subterrânea/química , Biofilmes , França , Sedimentos Geológicos/química , Hidrólise , Modelos Lineares , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Água
4.
Sci Total Environ ; 806(Pt 1): 150410, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571219

RESUMO

Understanding linkages between heterogeneous soil structures and non-uniform flow is fundamental for interpreting infiltration processes and improving hydrological simulations. Here, we utilized ground-penetrating radar (GPR) as a non-invasive technique to investigate those linkages and to complement current traditional methods that are labor-intensive, invasive, and non-repeatable. We combined time-lapse GPR surveys with different types of infiltration experiments to create three-dimensional (3D) diagrams of the wetting dynamics. We carried out the GPR surveys and validated them with in situ observations, independent measurements and field excavations at two experimental sites. Those sites were selected to represent different mechanisms that generate non-uniform flow: (1) preferential water infiltration initiated by tree trunk and root systems; and (2) lateral subsurface flow due to soil layering. Results revealed links between different types of soil heterogeneity and non-uniform flow. The first experimental site provided evidence of root-induced preferential flow paths along coarse roots, emphasizing the important role of coarse roots in facilitating preferential water movement through the subsurface. The second experimental site showed that water infiltrated through the restrictive layer mainly following the plant root system. The presented approach offers a non-invasive, repeatable and accurate way to detect non-uniform flow.


Assuntos
Radar , Solo , Imagem com Lapso de Tempo , Árvores , Movimentos da Água
5.
Sci Total Environ ; 728: 138866, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32570320

RESUMO

Controlling soil erosion, especially in its initial stages, is greatly important in natural resources management. Consequently, the present research aimed to control splash and interrill erosion in two soil types (marl at Marzan-Abad and loess at Maraveh-Tapeh sites in northern Iran) using biochar (BC) and polyacrylamide (PAM). We established 0.5 × 0.5-m plots and applied BC (800 g·m-2), PAM (2 g·m-2), and BC + PAM (800 g·m-2 + 2 g·m-2) with control plots and three replications on a slope of ~25%. We used a rainfall simulator to achieve rainfall intensity of 50 mm·h-1 with 30-min duration in the experiments. Analysis of the results obtained from the variables of splash and interrill erosion during the rainfall-runoff process showed that the PAM significantly (p ≤ 0.05) increased all study variables of splash erosion. For interrill erosion, it reduced the variables of soil loss and sediment concentration. However, the difference was not significant (p > 0.05) compared to the control plot and runoff from the two treatment sites increased relative to that from the control plots. The plot treated with BC showed decreased runoff volume, runoff coefficient, and soil loss compared to the control plot at the Marzan-Abad site, but the differences were not statistically significant (p > 0.05). However, the plot in which loess soil was treated with BC at the Maraveh-Tapeh site exhibited considerably (p ≤ 0.05) increased runoff and soil loss compared to the control plot. The entire results verified a wide range for benefit reduction of study treatments from +25.09 to -37.49% for runoff and from +38.59 to -231% for soil loss with more effectiveness for Maraveh-Tapeh Loess soil as well as combined application of BC and PAM. These findings contribute to improved understanding of proper application of soil amendments to control runoff and soil loss in loam and loess soils.

6.
Sci Total Environ ; 726: 138511, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320879

RESUMO

The objective of this paper was to identify the incidence and extent of preferential flow at two experimental areas located in Lyon, France. We used time-lapse ground-penetrating radar (GPR) surveys in conjunction with automatized single-ring infiltration experiments to create three-dimensional (3D) representations of infiltrated water. In total we established three 100 cm × 100 cm GPR grids and used differenced radargrams from pre- and post-infiltration surveys to detect wetting patterns. The analyzed time-lapse GPR surveys revealed the linkage between nonuniform flow and heterogeneous soil structures and plant roots. At the first experimental area, subsurface coarse gravels acted as capillary barriers that concentrated flow into narrow pathways via funneled flow. At the second experimental area, the interpolated 3D patterns closely matched direct observation of dyed patterns, thereby validating the applied protocol. They also highlighted the important role of plant roots in facilitating preferential water movement through the subsurface. The protocol presented in this study represents a valuable tool for improving the hydraulic characterization of highly heterogeneous soils, while also alleviating some of the excessive experimental efforts currently needed to detect preferential flow pathways in the field.

7.
Chemosphere ; 69(9): 1499-508, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17583773

RESUMO

The chemical and physical processes involved in the retention of 10(-2)M Zn, Pb and Cd in a calcareous medium were studied under saturated dynamic (column) and static (batch) conditions. Retention in columns decreased in order: Pb>>Cd approximately Zn. In the batch experiments, the same order was observed for a contact time of less than 40h and over, Pb>>Cd>Zn. Stronger Pb retention is in accordance with the lower solubility of Pb carbonates. However, the equality of retained Zn and Cd does not fit the solubility constants of carbonated solids. SEM analysis revealed that heavy metals and calcareous particles are associated. Pb precipitated as individualized Zn-Cd-Ca- free carbonated crystallites. All the heavy metals were also found to be associated with calcareous particles, without any change in their porosity, pointing to a surface/lattice diffusion-controlled substitution process. Zn and Cd were always found in concomitancy, though Pb fixed separately at the particle circumferences. The Phreeqc 2.12 interactive code was used to model experimental data on the following basis: flow fractionation in the columns, precipitation of Pb as cerrusite linked to kinetically controlled calcite dissolution, and heavy metal sorption onto proton exchanging sites (presumably surface complexation onto a calcite surface). This model simulates exchanges of metals with surface protons, pH buffering and the prevention of early Zn and Cd precipitation. Both modeling and SEM analysis show a probable significant decrease of calcite dissolution along with its contamination with metals.


Assuntos
Cádmio/análise , Sedimentos Geológicos/análise , Chumbo/análise , Modelos Químicos , Poluentes Químicos da Água/análise , Zinco/análise , Adsorção , França , Cinética , Termodinâmica , Movimentos da Água
8.
Chemosphere ; 62(8): 1311-23, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16169046

RESUMO

As part of a study of the phytotoxic risk of spreading contaminated sediments "on soil", a laboratory experiment was carried out to assess the impact of water draining from sediments on peripheral vegetation. Drainage water was obtained in the laboratory by settling three sediments with different pollutants levels, and the supernatant solutions (respectively A1, B1, C1 drainage waters) were used as soaking water for maize (Zea maïs L.) and ryegrass (Lolium perenne L.). The physicochemical characteristics of the supernatant water, particularly metal contents, showed a pattern of contamination, with C1>A1>B1. The plants tested were grown on soil for 21 days, before being soaked for another 21-day period with drainage water (treatments) and distilled water (control). Biomass parameters (fresh weight, length, etc.), enzymatic activity [glutamine synthetase (GS), phosphoenolpyruvate carboxylase (PEPc)] and Zn, Cu, Cd and Cr contents were measured on both the shoots and roots of each plant. Biomass parameters were stimulated by C1, not affected by A1 and decreased with B1 for maize, whereas they increased for ryegrass in all the treatments. Compared to the control, GS activity was stimulated by C1 in the shoots of both plants and inhibited by treatments B1 and C1 in maize roots. PEPc activity in ryegrass was 1.5-5 times higher with contaminated water treatment, while contrasting effects were observed in maize plants. Both plants showed greater accumulation of chromium and zinc than cadmium and copper. Treatment A1 was found to be less active on plant growth and have a lower impact on the physiological status (enzymatic activities) of both plants. Treatment C1 stimulated the growth and physiological status of the plants, especially in shoots, with higher metal accumulation values in both plants. Treatment B1 was found to show more variable effects on growth indices, enzymatic activity and metal accumulation according to plant species.


Assuntos
Poluentes do Solo/toxicidade , Poluentes Químicos da Água/toxicidade , Estudos de Avaliação como Assunto , Sedimentos Geológicos , Lolium/química , Lolium/efeitos dos fármacos , Lolium/crescimento & desenvolvimento , Metais Pesados/análise , Esgotos/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Zea mays/química , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento
9.
J Contam Hydrol ; 190: 1-14, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27131475

RESUMO

The transport of pesticides to groundwater is assumed to be impacted by flow processes and geochemical interactions occurring in the vadose zone. In this study, the transport of S-metolachlor (SMOC) and its two metabolites ESA-metolachlor (MESA) and OXA-metolachlor (MOXA) in vadose zone materials of a glaciofluvial aquifer is studied at laboratory scale. Column experiments are used to study the leaching of a conservative tracer (bromide) and SMOC, MESA and MOXA under unsaturated conditions in two lithofacies, a bimodal gravel (Gcm,b) and a sand (S-x). Tracer experiments showed water fractionation into mobile and immobile compartments more pronounced in bimodal gravel columns. In both lithofacies columns, SMOC outflow is delayed (retardation factor>2) and mass balance reveals depletion (mass balance of 0.59 and 0.77 in bimodal gravel and sand, respectively). However, complete mass elution associated with retardation factors close to unity shows that there is no adsorption of MESA and MOXA in either lithofacies. SMOC transport is characterized by non-equilibrium sorption and sink term in both bimodal gravel and sand columns. Batch experiments carried out using agitation times consistent with column water residence times confirmed a time-dependence of SMOC sorption and high adsorption rates (>80%) of applied concentrations. Desorption experiments confirm the irreversibility of a major part of the SMOC adsorption onto particles, corresponding to the sink term in columns. In the bimodal gravel column, SMOC adsorption occurs mainly on reactive particles in contact with mobile water because of flow regionalization whereas in the sand column, there is pesticide diffusion to the immobile water. Such results clearly show that sorption mechanisms in the vadose zone solids below the soil are both solute and contact-time-dependent and are impacted by hydrodynamic conditions. The more rapid transport of MESA and MOXA to the aquifer would be controlled mainly by water flow through the unsaturated zone whereas SMOC transport is retarded by sorption processes within the vadose zone.


Assuntos
Acetamidas/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Acetamidas/química , Acetamidas/metabolismo , Adsorção , França , Água Subterrânea/química , Modelos Teóricos , Praguicidas/análise , Praguicidas/química , Dióxido de Silício , Solo/química , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
10.
J Contam Hydrol ; 181: 69-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26184062

RESUMO

It is well recognized that colloidal nanoparticles are highly mobile in soils and can facilitate the transport of contaminants through the vadose zone. This work presents the combined effect of the capillary barrier and soil layer slope on the transport of water, bromide and nanoparticles through an unsaturated soil. Experiments were performed in a lysimeter (1×1×1.6m(3)) called LUGH (Lysimeter for Urban Groundwater Hydrology). The LUGH has 15 outputs that identify the temporal and spatial evolution of water flow, solute flux and nanoparticles in relation to the soil surface conditions and the 3D system configuration. Two different soil structures were set up in the lysimeter. The first structure comprises a layer of sand (0-0.2cm, in diameter) 35cm thick placed horizontally above a layer of bimodal mixture also 35cm thick to create a capillary barrier at the interface between the sand and bimodal material. The bimodal material is composed of a mixture 50% by weight of sand and gravel (0.4-1.1cm, in diameter). The second structure, using the same amount of sand and bimodal mixture as the first structure represents an interface with a 25% slope. A 3D numerical model based on Richards equation for flow and the convection dispersion equations coupled with a mechanical module for nanoparticle trapping was developed. The results showed that under the effect of the capillary barrier, water accumulated at the interface of the two materials. The sloped structure deflects flow in contrast to the structure with zero slope. Approximately 80% of nanoparticles are retained in the lysimeter, with a greater retention at the interface of two materials. Finally, the model makes a good reproduction of physical mechanisms observed and appears to be a useful tool for identifying key processes leading to a better understanding of the effect of capillary barrier on nanoparticle transfer in an unsaturated heterogeneous soil.


Assuntos
Hidrologia/métodos , Nanopartículas/análise , Solo/química , Brometos/análise , Brometos/química , Coloides/análise , Coloides/química , Água Subterrânea , Hidrologia/instrumentação , Modelos Teóricos , Nanopartículas/química , Dióxido de Silício , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA