Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Assunto da revista
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38203601

RESUMO

The majority of voltage-gated ion channels contain a defined voltage-sensing domain and a pore domain composed of highly conserved amino acid residues that confer electrical excitability via electromechanical coupling. In this sense, the voltage-gated proton channel (Hv1) is a unique protein in that voltage-sensing, proton permeation and pH-dependent modulation involve the same structural region. In fact, these processes synergistically work in concert, and it is difficult to separate them. To investigate the process of Hv1 voltage sensor trapping, we follow voltage-sensor movements directly by leveraging mutations that enable the measurement of Hv1 channel gating currents. We uncover that the process of voltage sensor displacement is due to two driving forces. The first reveals that mutations in the selectivity filter (D160) located in the S1 transmembrane interact with the voltage sensor. More hydrophobic amino acids increase the energy barrier for voltage sensor activation. On the other hand, the effect of positive charges near position 264 promotes the formation of salt bridges between the arginines of the voltage sensor domain, achieving a stable conformation over time. Our results suggest that the activation of the Hv1 voltage sensor is governed by electrostatic-hydrophobic interactions, and S4 arginines, N264 and selectivity filter (D160) are essential in the Ciona-Hv1 to understand the trapping of the voltage sensor.


Assuntos
Antifibrinolíticos , Ciona , Animais , Prótons , Aminoácidos , Arginina
2.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149297

RESUMO

Voltage-dependent potassium channels (Kv) are extremely sensitive to membrane voltage and play a crucial role in membrane repolarization during action potentials. Kv channels undergo voltage-dependent transitions between closed states before opening. Despite all we have learned using electrophysiological methods and structural studies, we still lack a detailed picture of the energetics of the activation process. We show here that even a single mutation can drastically modify the temperature response of the Shaker Kv channel. Using rapid cell membrane temperature steps (Tsteps), we explored the effects of temperature on the ILT mutant (V369I, I372L, and S376T) and the I384N mutant. The ILT mutant produces a significant separation between the transitions of the voltage sensor domain (VSD) activation and the I384N uncouples its movement from the opening of the domain (PD). ILT and I384N respond to temperature in drastically different ways. In ILT, temperature facilitates the opening of the channel akin to a "hot" receptor, reflecting the temperature dependence of the voltage sensor's last transition and facilitating VSD to PD coupling (electromechanical coupling). In I384N, temperature stabilizes the channel closed configuration analogous to a "cold" receptor. Since I384N drastically uncouples the VSD from the pore opening, we reveal the intrinsic temperature dependence of the PD itself. Here, we propose that the electromechanical coupling has either a "loose" or "tight" conformation. In the loose conformation, the movement of the VSD is necessary but not sufficient to efficiently propagate the electromechanical energy to the S6 gate. In the tight conformation the VSD activation is more effectively translated into the opening of the PD. This conformational switch can be tuned by temperature and modifications of the S4 and S4-S5 linker. Our results show that we can modulate the temperature dependence of Kv channels by affecting its electromechanical coupling.

3.
Front Pharmacol ; 15: 1373507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584598

RESUMO

Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.

4.
Front Integr Neurosci ; 18: 1321872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440417

RESUMO

Bioelectronic Medicine stands as an emerging field that rapidly evolves and offers distinctive clinical benefits, alongside unique challenges. It consists of the modulation of the nervous system by precise delivery of electrical current for the treatment of clinical conditions, such as post-stroke movement recovery or drug-resistant disorders. The unquestionable clinical impact of Bioelectronic Medicine is underscored by the successful translation to humans in the last decades, and the long list of preclinical studies. Given the emergency of accelerating the progress in new neuromodulation treatments (i.e., drug-resistant hypertension, autoimmune and degenerative diseases), collaboration between multiple fields is imperative. This work intends to foster multidisciplinary work and bring together different fields to provide the fundamental basis underlying Bioelectronic Medicine. In this review we will go from the biophysics of the cell membrane, which we consider the inner core of neuromodulation, to patient care. We will discuss the recently discovered mechanism of neurotransmission switching and how it will impact neuromodulation design, and we will provide an update on neuronal and glial basis in health and disease. The advances in biomedical technology have facilitated the collection of large amounts of data, thereby introducing new challenges in data analysis. We will discuss the current approaches and challenges in high throughput data analysis, encompassing big data, networks, artificial intelligence, and internet of things. Emphasis will be placed on understanding the electrochemical properties of neural interfaces, along with the integration of biocompatible and reliable materials and compliance with biomedical regulations for translational applications. Preclinical validation is foundational to the translational process, and we will discuss the critical aspects of such animal studies. Finally, we will focus on the patient point-of-care and challenges in neuromodulation as the ultimate goal of bioelectronic medicine. This review is a call to scientists from different fields to work together with a common endeavor: accelerate the decoding and modulation of the nervous system in a new era of therapeutic possibilities.

5.
Biol. Res ; 39(3): 385-401, 2006. ilus
Artigo em Inglês | LILACS | ID: lil-437374

RESUMO

Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 ìM-100 ìM) in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.


Assuntos
Animais , Canais de Cálcio/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Regulação Alostérica/fisiologia , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia
6.
Biol. Res ; 31(1): 17-32, 1998. ilus, graf
Artigo em Inglês | LILACS | ID: lil-225978

RESUMO

Calcium channel activity is crucial for many fundamental physiological processes ranging from the heart beat to synaptic transmission. The channel-forming protein, of about 2000 amino acids, comprises four domains internally homologous to each other. Voltage-dependent Ca2+ channels are the most selective ion channels known. Under physiological conditions, they prefer Ca2+ over Na+ by a ratio of about 1000:1. To explain at the same time the exquisite ion selectivity and the large Ca2+ ion turnover rate of Ca2+ channels (~ 3x10(6) ions/s), two kind models have been proposed. In one, the conduction pathway possesses two high-affinity binding sites. When two Ca2+ ions are bound to each site, the mutual repulsion between them speeds the exite rate for the ions, causing greater ion permeation through the pore. The second model hypothesizes the existence of a single site having a charged structure able to attract multiple, interacting ions, simultaneously. Recent studies that combine mutagenesis and electrophysiology show that the high-affinity binding site is formed by a ring of glutamate residues located in the pore forming region of the Ca2+ channel. As proposed in the second class of models, the results suggest that four glutamate residues, one glutamate donated by each repeat, combine to form a single high-affinity site. In this review the different conduction models for Ca2+ channels are discussed and confronted with structural data.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Sítios de Ligação , Transporte de Íons
7.
Biol. Res ; 32(1): 35-60, 1999. ilus
Artigo em Inglês | LILACS | ID: lil-241341

RESUMO

The development of plant transformation in the mid-1980s and of many new tools for cell biology, molecular genetics, and biochemistry has resulted in enormous progress in plant biology in the past decade. With the completion of the genome sequence of Arabidopsis thaliana just around the corner, we can expect even faster progress in the next decade. The interface between cell biology and signal transduction is emerging as a new and important field of research. In the past we thought of cell biology strictly in terms of organelles and their biogenesis and function, adn researches focused on questions such as, how do proteins enter chloroplasts? or, what is the structure of the macromolecules of the cell wall and how are the se molecules secreted? Signal transduction dealt primarily with the perception of light (photomorphogenesis) or hormones and with the effect such signals have on enhancing the activity of specific genes. Now we see that the fields of cell biology and signal transduction pathway usually involves multiple organelles of cellular structures Here are some examples to illustrate this new paradigm. How does abscisic acid (ABA) regulate stomatal closure? This pathway involves not only ABA receptors whose location is not yet known, but cation and anion channels in the plasma membrane, changes in the cytoskeleton, movement of water through water channels in the tonoplast and the plasma membrane, proteins with a farnesyl tail that can be located either in the cytosol or attached to a membrane, and probably unidentified ion channels in the tonoplast. In addition there are highly localized calcium oscillations in the cytoplasm resulting from the release of calcium stored in various compartments. The activities of all these cellular structures need to be coordinated during ABA-induced stomatal closure. For another example of the interplay between the proteins of signal transduction pathways and cytoplasmic structures, consider how plants mount defense response against pathogens. Elicitors produced by pathogens bind to receptors on the plant plasma membrane or in the cytosol and eventually activate a large number of genes. This results in the coordination of activities at the plasma membrane (production of reactive oxygen species), in the cytoskeleton, localized calcium oscillations, and the modulation of protein kinases and protein phosphatases whose locations remain to be determined. The movement of ...


Assuntos
Plantas/citologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA