Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0112123, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283274

RESUMO

Multiple factors explain the proper development of sourdough starters. Although the role of raw ingredients and geography, among other things, have been widely studied recently, the possible effect of air quality and water chlorination on the overall bacterial communities associated with sourdough remains to be explored. Here, using 16S rRNA amplicon sequencing, we show that clean, filtered-air severely limited the presence of lactic acid bacteria in sourdough starters, suggesting that surrounding air is an important source of microorganisms necessary for the development of sourdough starters. We also show that water chlorination at levels commonly found in drinking water systems has a limited impact on the overall bacterial communities developing in sourdough starters. However, using targeted sequencing, which offers a higher resolution, we found that the abundance of integron 1, a genetic mechanism responsible for the horizontal exchange of antibiotic-resistance genes in spoilage and pathogenic bacteria, increased significantly with the level of water chlorination. Although our results suggest that water chlorination might not impact sourdough starters at a deep phylogenetic level, they indicate that it can favor the spread of genetic elements associated with spoilage bacteria. IMPORTANCE: Proper development of sourdough starters is critical for making tasty and healthy bread. Although many factors contributing to sourdough development have been studied, the effect of water chlorination on the bacterial communities in sourdough has been largely ignored. Researchers used sequencing techniques to investigate this effect and found that water chlorination at levels commonly found in drinking water systems has a limited impact on the overall bacterial communities developing in sourdough starters. However, they discovered that water chlorination could increase the abundance of integron 1, a genetic mechanism responsible for the horizontal exchange of antibiotic resistance genes in spoilage and pathogenic bacteria. This suggests that water chlorination could favor the growth of key spoilage bacteria and compromise the quality and safety of the bread. These findings emphasize the importance of considering water quality when developing sourdough starters for the best possible bread.

2.
Nat Commun ; 13(1): 3101, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35661736

RESUMO

The mechanisms by which commensal organisms affect human physiology remain poorly understood. Lectins are non-enzymatic carbohydrate binding proteins that all organisms employ as part of establishing a niche, evading host-defenses and protecting against pathogens. Although lectins have been extensively studied in plants, bacterial pathogens and human immune cells for their role in disease pathophysiology and as therapeutics, the role of bacterial lectins in the human microbiome is largely unexplored. Here we report on the characterization of a lectin produced by a common human associated bacterium that interacts with myeloid cells in the blood and intestine. In mouse and cell-based models, we demonstrate that this lectin induces distinct immunologic responses in peripheral and intestinal leukocytes and that these responses are specific to monocytes, macrophages and dendritic cells. Our analysis of human microbiota sequencing data reveal thousands of unique sequences that are predicted to encode lectins, many of which are highly prevalent in the human microbiome yet completely uncharacterized. Based on the varied domain architectures of these lectins we predict they will have diverse effects on the human host. The systematic investigation of lectins in the human microbiome should improve our understanding of human health and provide new therapeutic opportunities.


Assuntos
Lectinas , Microbiota , Animais , Bactérias/metabolismo , Humanos , Lectinas/metabolismo , Camundongos , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA