Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(35): e2307772120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603747

RESUMO

Artificial cells are biomimetic structures formed from molecular building blocks that replicate biological processes, behaviors, and architectures. Of these building blocks, hydrogels have emerged as ideal, yet underutilized candidates to provide a gel-like chassis in which to incorporate both biological and nonbiological componentry which enables the replication of cellular functionality. Here, we demonstrate a microfluidic strategy to assemble biocompatible cell-sized hydrogel-based artificial cells with a variety of different embedded functional subcompartments, which act as engineered synthetic organelles. The organelles enable the recreation of increasingly biomimetic behaviors, including stimulus-induced motility, content release through activation of membrane-associated proteins, and enzymatic communication with surrounding bioinspired compartments. In this way, we showcase a foundational strategy for the bottom-up construction of hydrogel-based artificial cell microsystems which replicate fundamental cellular behaviors, paving the way for the construction of next-generation biotechnological devices.


Assuntos
Células Artificiais , Biomimética , Hidrogéis , Comunicação , Organelas
2.
Cereb Cortex ; 32(4): 668-688, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34401898

RESUMO

Transient neocortical events with high spectral power in the 15-29 Hz beta band are among the most reliable predictors of sensory perception. Prestimulus beta event rates in primary somatosensory cortex correlate with sensory suppression, most effectively 100-300 ms before stimulus onset. However, the neural mechanisms underlying this perceptual association are unknown. We combined human magnetoencephalography (MEG) measurements with biophysical neural modeling to test potential cellular and circuit mechanisms that underlie observed correlations between prestimulus beta events and tactile detection. Extending prior studies, we found that simulated bursts from higher-order, nonlemniscal thalamus were sufficient to drive beta event generation and to recruit slow supragranular inhibition acting on a 300 ms timescale to suppress sensory information. Further analysis showed that the same beta-generating mechanism can lead to facilitated perception for a brief period when beta events occur simultaneously with tactile stimulation before inhibition is recruited. These findings were supported by close agreement between model-derived predictions and empirical MEG data. The postevent suppressive mechanism explains an array of studies that associate beta with decreased processing, whereas the during-event facilitatory mechanism may demand a reinterpretation of the role of beta events in the context of coincident timing.


Assuntos
Percepção do Tato , Biofísica , Humanos , Magnetoencefalografia , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia
3.
Proc Natl Acad Sci U S A ; 116(34): 16711-16716, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31371493

RESUMO

To date, reconstitution of one of the fundamental methods of cell communication, the signaling pathway, has been unaddressed in the bottom-up construction of artificial cells (ACs). Such developments are needed to increase the functionality and biomimicry of ACs, accelerating their translation and application in biotechnology. Here, we report the construction of a de novo synthetic signaling pathway in microscale nested vesicles. Vesicle-cell models respond to external calcium signals through activation of an intracellular interaction between phospholipase A2 and a mechanosensitive channel present in the internal membranes, triggering content mixing between compartments and controlling cell fluorescence. Emulsion-based approaches to AC construction are therefore shown to be ideal for the quick design and testing of new signaling networks and can readily include synthetic molecules difficult to introduce to biological cells. This work represents a foundation for the engineering of multicompartment-spanning designer pathways that can be utilized to control downstream events inside an AC, leading to the assembly of micromachines capable of sensing and responding to changes in their local environment.


Assuntos
Células Artificiais , Compartimento Celular , Mecanotransdução Celular , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Compartimento Celular/efeitos dos fármacos , Quelantes/farmacologia , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/efeitos dos fármacos , Fosfolipases A2/metabolismo
4.
Angew Chem Int Ed Engl ; 60(43): 23327-23334, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34416073

RESUMO

Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718. X-ray crystallography revealed the molecular basis of the highly cooperative FAK-GSK215-VHL ternary complex, and GSK215 showed differentiated in-vitro pharmacology compared to VS-4718. In mice, a single dose of GSK215 induced rapid and prolonged FAK degradation, giving a long-lasting effect on FAK levels (≈96 h) and a marked PK/PD disconnect. This tool PROTAC molecule is expected to be useful for the study of FAK-degradation biology in vivo, and our results indicate that FAK degradation may be a differentiated clinical strategy versus FAK inhibition for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacocinética , Dipeptídeos/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos , Estrutura Molecular , Ubiquitina-Proteína Ligases/metabolismo
5.
Haematologica ; 105(3): 808-819, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31289200

RESUMO

Prostacyclin (PGI2) controls platelet activation and thrombosis through a cyclic adenosine monophosphate (cAMP) signaling cascade. However, in patients with cardiovascular diseases this protective mechanism fails for reasons that are unclear. Using both pharmacological and genetic approaches we describe a mechanism by which oxidized low density lipoproteins (oxLDL) associated with dyslipidemia promote platelet activation through impaired PGI2 sensitivity and diminished cAMP signaling. In functional assays using human platelets, oxLDL modulated the inhibitory effects of PGI2, but not a phosphodiesterase (PDE)-insensitive cAMP analog, on platelet aggregation, granule secretion and in vitro thrombosis. Examination of the mechanism revealed that oxLDL promoted the hydrolysis of cAMP through the phosphorylation and activation of PDE3A, leading to diminished cAMP signaling. PDE3A activation by oxLDL required Src family kinases, Syk and protein kinase C. The effects of oxLDL on platelet function and cAMP signaling were blocked by pharmacological inhibition of CD36, mimicked by CD36-specific oxidized phospholipids and ablated in CD36-/- murine platelets. The injection of oxLDL into wild-type mice strongly promoted FeCl3-induced carotid thrombosis in vivo, which was prevented by pharmacological inhibition of PDE3A. Furthermore, blood from dyslipidemic mice was associated with increased oxidative lipid stress, reduced platelet sensitivity to PGI2 ex vivo and diminished PKA signaling. In contrast, platelet sensitivity to a PDE-resistant cAMP analog remained normal. Genetic deletion of CD36 protected dyslipidemic animals from PGI2 hyposensitivity and restored PKA signaling. These data suggest that CD36 can translate atherogenic lipid stress into platelet hyperactivity through modulation of inhibitory cAMP signaling.


Assuntos
Plaquetas , Epoprostenol , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Humanos , Lipídeos , Camundongos , Ativação Plaquetária , Agregação Plaquetária
6.
Langmuir ; 35(50): 16521-16527, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31702159

RESUMO

Dispersions of nonlamellar lipid membrane assemblies are gaining increasing interest for drug delivery and protein therapeutic application. A key bottleneck has been the lack of rational design rules for these systems linking different lipid species and conditions to defined lattice parameters and structures. We have developed robust methods to form cubosomes (nanoparticles with porous internal structures) with water channel diameters of up to 171 Å, which are over 4 times larger than archetypal cubosome structures. The water channel diameter can be tuned via the incorporation of cholesterol and the charged lipid DOPA, DOPG, or DOPS. We have found that large molecules can be incorporated into the porous cubosome structure and that these molecules can interact with the internal cubosome membrane. This offers huge potential for accessible encapsulation and protection of biomolecules and development of confined interfacial reaction environments.


Assuntos
Colesterol/química , Engenharia , Glicerofosfolipídeos/química
7.
Proc Natl Acad Sci U S A ; 113(33): E4885-94, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27469163

RESUMO

Human neocortical 15-29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting <150 ms with a stereotypical waveform. Computational modeling uniquely designed to infer the electrical currents underlying these signals showed that beta events could emerge from the integration of nearly synchronous bursts of excitatory synaptic drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function.


Assuntos
Ritmo beta , Simulação por Computador , Neocórtex/fisiologia , Animais , Feminino , Humanos , Macaca mulatta , Magnetoencefalografia , Camundongos , Modelos Neurológicos , Núcleos Talâmicos/fisiologia
8.
Angew Chem Int Ed Engl ; 57(39): 12656-12660, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30095209

RESUMO

Two-dimensional (2D) layered graphitic carbon nitride (gCN) nanosheets offer intriguing electronic and chemical properties. However, the exfoliation and functionalisation of gCN for specific applications remain challenging. We report a scalable one-pot reductive method to produce solutions of single- and few-layer 2D gCN nanosheets with excellent stability in a high mass yield (35 %) from polytriazine imide. High-resolution imaging confirmed the intact crystalline structure and identified an AB stacking for gCN layers. The charge allows deliberate organic functionalisation of dissolved gCN, providing a general route to adjust their properties.

9.
Anal Chem ; 89(6): 3395-3401, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28238262

RESUMO

Here we introduce a Rapid Adaptable Portable In vitro Detection biosensor platform (RAPID) for detecting ligands that interact with nuclear hormone receptors (NHRs). The RAPID platform can be adapted for field use, allowing rapid evaluation of endocrine disrupting chemicals (EDCs) presence or absence in environmental samples, and can also be applied for drug screening. The biosensor is based on an engineered, allosterically activated fusion protein, which contains the ligand binding domain from a target NHR (human thyroid receptor ß in this work). In vitro expression of this protein using cell-free protein synthesis (CFPS) technology in the presence of an EDC leads to activation of a reporter enzyme, reported through a straightforward colorimetric assay output. In this work, we demonstrate the potential of this biosensor platform to be used in a portable "just-add-sample" format for near real-time detection. We also demonstrate the robust nature of the cell-free protein synthesis component in the presence of a variety of environmental and human samples, including sewage, blood, and urine. The presented RAPID biosensor platform is significantly faster and less labor intensive than commonly available technologies, making it a promising tool for detecting environmental EDC contamination and screening potential NHR-targeted pharmaceuticals.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos/análise , Proteínas Recombinantes de Fusão/síntese química , Receptores beta dos Hormônios Tireóideos/química , Avaliação Pré-Clínica de Medicamentos , Humanos , Ligantes , Proteínas Recombinantes de Fusão/química
10.
Phys Chem Chem Phys ; 19(13): 9199-9209, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28317964

RESUMO

Lanthanide salts have been studied for many years, primarily in Nuclear Magnetic Resonance (NMR) experiments of mixed lipid-protein systems and more recently to study lipid flip-flop in model membrane systems. It is well recognised that lanthanide salts can influence the behaviour of both lipid and protein systems, however a full molecular level description of lipid-lanthanide interactions is still outstanding. Here we present a study of lanthanide-bilayer interactions, using molecular dynamics computer simulations, fluorescence electrostatic potential experiments and nuclear magnetic resonance. Computer simulations reveal the microscopic structure of DMPC lipid bilayers in the presence of Yb3+, and a surprising ability of the membranes to adsorb significant concentrations of Yb3+ without disrupting the overall membrane structure. At concentrations commonly used in NMR experiments, Yb3+ ions bind strongly to 5 lipids, inducing a small decrease of the area per lipid and a slight increase of the ordering of the aliphatic chains and the bilayer thickness. The area compressibility modulus increases by a factor of two, with respect to the free-salt case, showing that Yb3+ ions make the bilayer more rigid. These modifications of the bilayer properties should be taken into account in the interpretation of NMR experiments.

11.
Soft Matter ; 12(37): 7731-7734, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27722718

RESUMO

We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.

12.
J Org Chem ; 81(9): 3942-50, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27045570

RESUMO

The Chan-Evans-Lam reaction is a valuable C-N bond forming process. However, aryl boronic acid pinacol (BPin) ester reagents can be difficult coupling partners that often deliver low yields, in particular in reactions with aryl amines. Herein, we report effective reaction conditions for the Chan-Evans-Lam amination of aryl BPin with alkyl and aryl amines. A mixed MeCN/EtOH solvent system was found to enable effective C-N bond formation using aryl amines while EtOH is not required for the coupling of alkyl amines.

13.
Blood ; 122(20): 3533-45, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24100445

RESUMO

Cyclic adenosine monophosphate (cAMP)-dependent signaling modulates platelet shape change through unknown mechanisms. We examined the effects of cAMP signaling on platelet contractile machinery. Prostaglandin E1 (PGE1)-mediated inhibition of thrombin-stimulated shape change was accompanied by diminished phosphorylation of myosin light chain (MLC). Since thrombin stimulates phospho-MLC through RhoA/Rho-associated, coiled-coil containing protein kinase (ROCK)-dependent inhibition of MLC phosphatase (MLCP), we examined the effects of cAMP on this pathway. Thrombin stimulated the membrane localization of RhoA and the formation of a signaling complex of RhoA/ROCK2/myosin phosphatase-targeting subunit 1 (MYPT1). This resulted in ROCK-mediated phosphorylation of MYPT1 on threonine 853 (thr(853)), the disassociation of the catalytic subunit protein phosphatase 1δ (PP1δ) from MYPT1 and inhibition of basal MLCP activity. Treatment of platelets with PGE1 prevented thrombin-induced phospho-MYPT1-thr(853) in a protein kinase A (PKA)-dependent manner. Examination of the molecular mechanisms revealed that PGE1 induced the phosphorylation of RhoA on serine(188) through a pathway requiring cAMP and PKA. This event inhibited the membrane relocalization of RhoA, prevented the association of RhoA with ROCK2 and MYPT1, attenuated the dissociation of PP1δ from MYPT1, and thereby restored basal MLCP activity leading to a decrease in phospho-MLC. These data reveal a new mechanism by which the cAMP-PKA signaling pathway regulates platelet function.


Assuntos
Plaquetas/enzimologia , AMP Cíclico/fisiologia , Quinase de Cadeia Leve de Miosina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/fisiologia , Processamento de Proteína Pós-Traducional/fisiologia , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Alprostadil/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Forma Celular/efeitos dos fármacos , Forma Celular/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Humanos , Técnicas In Vitro , Complexos Multiproteicos , Quinase de Cadeia Leve de Miosina/sangue , Fosforilação , Fosfosserina/metabolismo , Fosfotreonina/metabolismo , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas , Trombina/farmacologia
14.
Langmuir ; 31(10): 2979-87, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-25738977

RESUMO

A large variety of data exists on lipid phase behavior; however, it is mostly in nonbuffered systems over nonbiological temperature ranges. We present biophysical data on lipid mixtures of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylethanolamine (DOPE), and lysophosphatidylcholine (LysoPC) examining their behaviors in excess water and buffer systems over the temperature range 4-34 °C. These mixtures are commonly used to investigate the effects of spontaneous curvature on integral membrane proteins. Using small-angle X-ray scattering (SAXS) and (31)P NMR, we observed lamellar and vesicle phases, with the buffer causing an increase in the layer spacing. Increasing amounts of DOPE in a DOPC bilayer decreased the layer spacing of the mesophase, while the opposite trend was observed for increasing amounts of LysoPC. (31)P static NMR was used to analyze the DOPC:LysoPC samples to investigate the vesicle sizes present, with evidence of vesicle budding observed at LysoPC concentrations above 30 mol %. NMR line shapes were fitted using an adapted program accounting for the distortion of the lipids within the magnetic field. The distortion of the vesicle, because of magnetic susceptibility, varied with LysoPC content, and a discontinuity was found in both the water and buffer samples. Generally, the distortion increased with LysoPC content; however, at a ratio of DOPC:LysoPC 60:40, the sample showed a level of distortion of the vesicle similar to that of pure DOPC. This implies an increased flexibility in the membrane at this point. Commonly, the assumption is that for increasing LysoPC concentration there is a reduction in membrane tension, implying that estimations of membrane tension based on spontaneous curvature assumptions may not be accurate.


Assuntos
Bicamadas Lipídicas/química , Lisofosfatidilcolinas/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Soluções Tampão , Membrana Celular/química , Espectroscopia de Ressonância Magnética
15.
Langmuir ; 31(12): 3678-86, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25742392

RESUMO

Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(ß)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.


Assuntos
Ceramidas/química , Transição de Fase , Pressão , Esfingomielinas/química , Temperatura , Animais
16.
Soft Matter ; 11(16): 3279-86, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25790335

RESUMO

Lipid bicontinuous cubic phases have attracted enormous interest as bio-compatible scaffolds for use in a wide range of applications including membrane protein crystallisation, drug delivery and biosensing. One of the major bottlenecks that has hindered exploitation of these structures is an inability to create targeted highly swollen bicontinuous cubic structures with large and tunable pore sizes. In contrast, cubic structures found in vivo have periodicities approaching the micron scale. We have been able to engineer and control highly swollen bicontinuous cubic phases of spacegroup Im3m containing only lipids by (a) increasing the bilayer stiffness by adding cholesterol and (b) inducing electrostatic repulsion across the water channels by addition of anionic lipids to monoolein. By controlling the composition of the ternary mixtures we have been able to achieve lattice parameters up to 470 Å, which is 5 times that observed in pure monoolein and nearly twice the size of any lipidic cubic phase reported previously. These lattice parameters significantly exceed the predicted maximum swelling for bicontinuous cubic lipid structures, which suggest that thermal fluctuations should destroy such phases for lattice parameters larger than 300 Å.


Assuntos
Lipídeos/química , Colesterol/química , Glicerídeos/química , Fosfatidilgliceróis/química , Eletricidade Estática , Água/química
17.
Theor Biol Med Model ; 12: 22, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26472354

RESUMO

BACKGROUND: Bioelectric gradients among all cells, not just within excitable nerve and muscle, play instructive roles in developmental and regenerative pattern formation. Plasma membrane resting potential gradients regulate cell behaviors by regulating downstream transcriptional and epigenetic events. Unlike neurons, which fire rapidly and typically return to the same polarized state, developmental bioelectric signaling involves many cell types stably maintaining various levels of resting potential during morphogenetic events. It is important to begin to quantitatively model the stability of bioelectric states in cells, to understand computation and pattern maintenance during regeneration and remodeling. METHOD: To facilitate the analysis of endogenous bioelectric signaling and the exploitation of voltage-based cellular controls in synthetic bioengineering applications, we sought to understand the conditions under which somatic cells can stably maintain distinct resting potential values (a type of state memory). Using the Channelpedia ion channel database, we generated an array of amphibian oocyte and mammalian membrane models for voltage evolution. These models were analyzed and searched, by simulation, for a simple dynamical property, multistability, which forms a type of voltage memory. RESULTS: We find that typical mammalian models and amphibian oocyte models exhibit bistability when expressing different ion channel subsets, with either persistent sodium or inward-rectifying potassium, respectively, playing a facilitative role in bistable memory formation. We illustrate this difference using fast sodium channel dynamics for which a comprehensive theory exists, where the same model exhibits bistability under mammalian conditions but not amphibian conditions. In amphibians, potassium channels from the Kv1.x and Kv2.x families tend to disrupt this bistable memory formation. We also identify some common principles under which physiological memory emerges, which suggest specific strategies for implementing memories in bioengineering contexts. CONCLUSION: Our results reveal conditions under which cells can stably maintain one of several resting voltage potential values. These models suggest testable predictions for experiments in developmental bioelectricity, and illustrate how cells can be used as versatile physiological memory elements in synthetic biology, and unconventional computation contexts.


Assuntos
Anfíbios/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/fisiologia , Mamíferos , Potenciais da Membrana/fisiologia , Animais , Linhagem Celular , Simulação por Computador , Condutividade Elétrica , Modelos Biológicos , Canais de Sódio/metabolismo , Xenopus
18.
Org Biomol Chem ; 13(10): 3093-102, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25628154

RESUMO

A modular synthesis of functionalised biaryl phenols from two boronic acid derivatives has been developed via one-pot Suzuki-Miyaura cross-coupling, chemoselective control of boron solution speciation to generate a reactive boronic ester in situ, and oxidation. The utility of this method has been further demonstrated by application in the synthesis of drug molecules and components of organic electronics, as well as within iterative cross-coupling.


Assuntos
Boro/química , Fenóis/química , Fenóis/síntese química , Catálise , Desenho de Fármacos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oxidantes/química , Oxigênio/química , Fenol/química , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo
19.
Phys Chem Chem Phys ; 17(24): 15534-7, 2015 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-25932977

RESUMO

Whereas spatial organisation of function is ubiquitous in biology, it has been lacking in artificial cells. We rectify this by using multi-compartment vesicles as chassis for artificial cells, allowing distinct biological processes to be isolated in space. This is demonstrated by in vitro synthesis of two proteins in predefined vesicle regions.


Assuntos
Células Artificiais/metabolismo , Reatores Biológicos , Biossíntese de Proteínas , Proteínas/metabolismo , Células Artificiais/química , Compartimento Celular , Proteínas/química
20.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352527

RESUMO

Even under spontaneous conditions and in the absence of changing environmental demands, awake animals alternate between increased or decreased periods of alertness. These changes in brain state can occur rapidly, on a timescale of seconds, and neuromodulators such as acetylcholine (ACh) are thought to play an important role in driving these spontaneous state transitions. Here, we perform the first simultaneous imaging of ACh sensors and GCaMP-expressing axons in vivo, to examine the spatiotemporal properties of cortical ACh activity and release during spontaneous changes in behavioral state. We observed a high correlation between simultaneously recorded basal forebrain axon activity and neuromodulator sensor fluorescence around periods of locomotion and pupil dilation. Consistent with volume transmission of ACh, increases in axon activity were accompanied by increases in local ACh levels that fell off with the distance from the nearest axon. GRAB-ACh fluorescence could be accurately predicted from axonal activity alone, providing the first validation that neuromodulator axon activity is a reliable proxy for nearby neuromodulator levels. Deconvolution of fluorescence traces allowed us to account for the kinetics of the GRAB-ACh sensor and emphasized the rapid clearance of ACh for smaller transients outside of running periods. Finally, we trained a predictive model of ACh fluctuations from the combination of pupil size and running speed; this model performed better than using either variable alone, and generalized well to unseen data. Overall, these results contribute to a growing understanding of the precise timing and spatial characteristics of cortical ACh during fast brain state transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA