RESUMO
AIM: This study aimed to evaluate the medium-term effects of low-level laser therapy (LLLT or photobiomodulation) in postexercise skeletal muscle recovery and performance enhancement and to identify the optimal dose of 810 nm LLLT. MATERIALS AND METHODS: A randomized, double-blind, placebo-controlled trial was performed, with voluntary participation of 28 high-level soccer athletes. We analyzed maximum voluntary contraction (MVC), delayed onset muscle soreness (DOMS), creatine kinase (CK) activity, and interleukin-6 (IL-6) expression. The assessments were performed before exercise protocols, after 1 min, and 1, 24, 48, 72, and 96 h after the end of eccentric exercise protocol used to induce fatigue. LLLT was applied before eccentric exercise protocol with a cluster with five diodes, and dose of 10, 30, or 50 J (200 mW and 810 nm) in six sites of quadriceps. RESULTS: LLLT increased (p < 0.05) MVC from immediately after exercise to 24 h with 50 J dose, and from 24 to 96 h with 10 J dose. Both 10 J then 50 J dose decreased (p < 0.05) CK and IL-6 with better results in favor of 50 J dose. However, LLLT had no effect in decreasing DOMS. No differences (p > 0.05) were found for 30 J dose in any of the outcomes measured. CONCLUSIONS: Pre-exercise LLLT, mainly with 50 J dose, significantly increases performance and improves biochemical markers related to skeletal muscle damage and inflammation.