Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 558(7711): E6, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29899442

RESUMO

In the originally published version of this Letter, the x axis in Fig. 3a should have been: 'PC1: 26%' rather than 'PC1: 46%', and the y axis should have been: 'PC2: 16%' rather than 'PC2: 29%'. We also noticed an error in the numbering of the fossils from Qafzeh: Qafzeh 27 should be removed, and Qafzeh 26 is actually Qafzeh 25, following Tillier (2014)1 and Schuh et al. (2017)2 and personal communication with B. Vandermeersch and M. D. Garralda. The correct enumeration of Qafzeh samples in the 'Mandibular metric data' section of the Methods is therefore: 'Qafzeh (9, 25)' rather than 'Qafzeh (9, 26, 27)'. Owing to the removal of Qafzeh 27, the convex hull of early modern humans changes slightly in Extended Data Fig. 1c. The sample sizes in Extended Data Fig. 1c should have read: Middle Pleistocene archaic Homo n = 19 (instead of 11), Neanderthals n = 40 (instead of 41), early modern humans n = 12 (instead of 7), and recent modern humans n = 46 (instead of 48). In Extended Data Table 2, the mean and standard deviation of corpus height and breadth at mental foramen for early modern humans should have been: x̅ = 33.15, σ = 3.26 for height (rather than x̅ = 34.23, σ = 4.57); and x̅ = 16.25, σ = 1.28 for breadth (rather than x̅ = 16.04, σ = 1.75). Accordingly, n = 12 (rather than n = 13) for both breadth and height. These errors have been corrected in the Letter online (the original Extended Data Fig. 1 is shown in Supplementary Information to this Amendment). These changes do not alter any inferences drawn from the data.

2.
Nature ; 546(7657): 289-292, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28593953

RESUMO

Fossil evidence points to an African origin of Homo sapiens from a group called either H. heidelbergensis or H. rhodesiensis. However, the exact place and time of emergence of H. sapiens remain obscure because the fossil record is scarce and the chronological age of many key specimens remains uncertain. In particular, it is unclear whether the present day 'modern' morphology rapidly emerged approximately 200 thousand years ago (ka) among earlier representatives of H. sapiens or evolved gradually over the last 400 thousand years. Here we report newly discovered human fossils from Jebel Irhoud, Morocco, and interpret the affinities of the hominins from this site with other archaic and recent human groups. We identified a mosaic of features including facial, mandibular and dental morphology that aligns the Jebel Irhoud material with early or recent anatomically modern humans and more primitive neurocranial and endocranial morphology. In combination with an age of 315 ± 34 thousand years (as determined by thermoluminescence dating), this evidence makes Jebel Irhoud the oldest and richest African Middle Stone Age hominin site that documents early stages of the H. sapiens clade in which key features of modern morphology were established. Furthermore, it shows that the evolutionary processes behind the emergence of H. sapiens involved the whole African continent.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Filogenia , África/etnologia , Animais , Cronologia como Assunto , Face/anatomia & histologia , Humanos , Mandíbula/anatomia & histologia , Marrocos , Crânio/anatomia & histologia , Dente/anatomia & histologia
3.
Proc Natl Acad Sci U S A ; 116(11): 4928-4933, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30782806

RESUMO

Isotope and archeological analyses of Paleolithic food webs have suggested that Neandertal subsistence relied mainly on the consumption of large herbivores. This conclusion was primarily based on elevated nitrogen isotope ratios in Neandertal bone collagen and has been significantly debated. This discussion relies on the observation that similar high nitrogen isotopes values could also be the result of the consumption of mammoths, young animals, putrid meat, cooked food, freshwater fish, carnivores, or mushrooms. Recently, compound-specific C and N isotope analyses of bone collagen amino acids have been demonstrated to add significantly more information about trophic levels and aquatic food consumption. We undertook single amino acid C and N isotope analysis on two Neandertals, which were characterized by exceptionally high N isotope ratios in their bulk bone or tooth collagen. We report here both C and N isotope ratios on single amino acids of collagen samples for these two Neandertals and associated fauna. The samples come from two sites dating to the Middle to Upper Paleolithic transition period (Les Cottés and Grotte du Renne, France). Our results reinforce the interpretation of Neandertal dietary adaptations as successful top-level carnivores, even after the arrival of modern humans in Europe. They also demonstrate that high δ15N values of bone collagen can solely be explained by mammal meat consumption, as supported by archeological and zooarcheological evidence, without necessarily invoking explanations including the processing of food (cooking, fermenting), the consumption of mammoths or young mammals, or additional (freshwater fish, mushrooms) dietary protein sources.


Assuntos
Aminoácidos/análise , Carnívoros/fisiologia , Colágeno/química , Cadeia Alimentar , Homem de Neandertal/fisiologia , Isótopos de Nitrogênio/análise , Animais , Isótopos de Carbono/análise
4.
J Hum Evol ; 138: 102687, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759256

RESUMO

We report on a computer-based reconstruction of a well-preserved ape skull from late Miocene deposits in Rudabánya, Hungary. Based on micro-computed tomographic scans of the original Rudapithecus hungaricus partial cranium RUD 200 and the associated mandible RUD 212 we realign displaced bone fragments, and reconstruct the shape of the upper and lower jaws guided by occlusal fingerprint analysis of dental wear patterns. We apply geometric morphometric methods based on several hundred landmarks and sliding semilandmarks to estimate missing data, and create multiple reconstructions of the specimen. We then compare the reconstructed overall cranial shape, as well as the volume and shape of the endocast, with extant primates. Multiple reconstructions of RUD 200 yield an average endocranial volume of 234 cc (S.D.: 9 cc; range: 221-247 cc). RUD 200 is most similar to African apes in overall cranial shape, but in a statistical analysis of endocranial shape the specimen falls closest to extant hylobatids. Our data suggest that R. hungaricus from the late Miocene in Europe displays aspects of the overall cranial geometry typical of extant African great apes, but it does not show an evolutionary reorganization of the brain evident in Pan, Gorilla, and Pongo.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Animais , Evolução Biológica , Feminino , Hungria
5.
J Hum Evol ; 138: 102683, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31765984

RESUMO

Few European sites have yielded human dental remains safely dated to the end of MIS 4/beginning of MIS 3. One of those sites is Marillac (Southwestern France), a collapsed karstic cave where archeological excavations (1967-1980) conducted by B. Vandermeersch unearthed numerous faunal and human remains, as well as a few Mousterian Quina tools. The Marillac sinkhole was occasionally used by humans to process the carcasses of different prey, but there is no evidence for a residential use of the site, nor have any hearths been found. Rare carnivore bones were also discovered, demonstrating that the sinkhole was seasonally used, not only by Neanderthals, but also by predators across several millennia. The lithostratigraphic units containing the human remains were dated to ∼60 kyr. The fossils consisted of numerous fragments of skulls and jaws, isolated teeth and several post-cranial bones, many of them with traces of perimortem manipulations. For those already published, their morphological characteristics and chronostratigraphic context allowed their attribution to Neanderthals. This paper analyzes sixteen unpublished human teeth (fourteen permanent and two deciduous) by investigating the external morphology and metrical variation with respect to other Neanderthal remains and a sample from modern populations. We also investigate their enamel thickness distribution in 2D and 3D, the enamel-dentine junction morphology (using geometric morphometrics) of one molar and two premolars, the roots and the possible expression of taurodontism, as well as pathologies and developmental defects. The anterior tooth use and paramasticatory activities are also discussed. Morphological and structural alterations were found on several teeth, and interpreted in light of human behavior (tooth-pick) and carnivores' actions (partial digestion). The data are interpreted in the context of the available information for the Eurasian Neanderthals.


Assuntos
Fósseis/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Dente/anatomia & histologia , Animais , Arqueologia , França
6.
Am J Phys Anthropol ; 168(1): 25-44, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30431648

RESUMO

OBJECTIVES: Adult age at death estimation continues to challenge physical anthropologists. One estimation method involves counting tooth cementum annulations (TCA). Non-destructively accessing TCA is a critical step to approaching fossil teeth of unknown age and to verifying life history profiles of human ancestors. This pilot study aims to (a) non-destructively image TCA in teeth from a known age archeological human population by propagation phase contrast X-ray synchrotron µCT (PPC-SR-µCT) (b) test the correlation between real and estimated ages, and the accuracy, precision and bias of age estimates. MATERIALS AND METHODS: We examine 20 permanent human canines (aged 20-81 years), from a 18th to 19th century known age collection from St. Luke's Church (London, England). We scanned transverse segments of acellular cementum in the apical portion of the middle root third using PPC-SR-µCT. We generated virtual transverse sections on which two observers perform two sessions of blind TCA counts. We calculate the estimated ages at death by adding 10 years to the TCA counts. RESULTS: A moderately strong positive linear relationship exists between real and estimated ages (r = 0.76, p < .001), with an average inaccuracy of 16.1 years and an average bias towards underestimation of 15.7 years. This difference is lower in individuals <50 years (6.8 and 6.5 years, respectively, n = 10) compared with those >50 years (24.9 years, n = 10). DISCUSSION: We reliably imaged and identified TCA in individuals <50 years from a known-age archeological sample. Scanning refinement will yield a promising alternative to current destructive methods of TCA analyses and to aid access to life history events in adult fossil hominins.


Assuntos
Determinação da Idade pelos Dentes/métodos , Cemento Dentário/diagnóstico por imagem , Microtomografia por Raio-X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Antropologia Física , Dente Canino/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Síncrotrons , Microtomografia por Raio-X/instrumentação , Adulto Jovem
7.
J Hum Evol ; 121: 40-54, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709292

RESUMO

Perikymata, incremental growth lines visible on tooth enamel surfaces, differ in their distribution and number among hominin species, although with overlapping patterns. This study asks: (1) How does the distribution of perikymata along the lateral enamel surface of Homo naledi anterior teeth compare to that of other hominins? (2) When both perikymata distribution and number are analyzed together, how distinct is H. naledi from other hominins? A total of 19 permanent anterior teeth (incisors and canines) of H. naledi were compared, by tooth type, to permanent anterior teeth of other hominins: Australopithecus afarensis, Australopithecus africanus, Paranthropus robustus, Paranthropus boisei, Homo ergaster/Homo erectus, other early Homo, Neandertals, and modern humans, with varying sample sizes. Repeated measures analyses of the percentage of perikymata per decile of reconstructed crown height yielded several statistically significant differences between H. naledi and other hominins. Canonical variates analysis of percentage of perikymata in the cervical half of the crown together with perikymata number revealed that, in 8 of 19 cases, H. naledi teeth were significantly unlikely to be classified as other hominins, while exhibiting least difference from modern humans (especially southern Africans). In a cross-validated analysis, 68% of the H. naledi teeth were classified as such, while 32% were classified as modern human (most often southern African). Of 313 comparative teeth use for this analysis, only 1.9% were classified as H. naledi. What tends to differentiate H. naledi anterior tooth crowns from those of most other hominins, including some modern humans, is strongly skewed perikymata distributions combined with perikymata numbers that fall in the middle to lower ranges of hominin values. H. naledi therefore tends toward a particular combination of these features that is less often seen in other hominins. Implications of these data for the growth and development of H. naledi anterior teeth are considered.


Assuntos
Esmalte Dentário/crescimento & desenvolvimento , Hominidae/crescimento & desenvolvimento , Animais , Fósseis
8.
J Hum Evol ; 108: 161-175, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28622928

RESUMO

The chronology of dental development and life history of primitive catarrhines provides a crucial comparative framework for understanding the evolution of hominoids and Old World monkeys. Among the extinct groups of catarrhines are the pliopithecoids, with no known descendants. Anapithecus hernyaki is a medium-size stem catarrhine known from Austria, Hungary and Germany around 10 Ma, and represents a terminal lineage of a clade predating the divergence of hominoids and cercopithecoids, probably more than 30 Ma. In a previous study, Anapithecus was characterized as having fast dental development. Here, we used non-destructive propagation phase contrast synchrotron micro-tomography to image several dental microstructural features in the mixed mandibular dentition of RUD 9, the holotype of A. hernyaki. We estimate its age at death to be 1.9 years and describe the pattern, sequence and timing of tooth mineralization. Our results do not support any simplistic correlation between body mass and striae periodicity, since RUD 9 has a 3-day periodicity, which was previously thought unlikely based on body mass estimates in Anapithecus. We demonstrate that the teeth in RUD 9 grew even faster and initiated even earlier in development than suggested previously. Permanent first molars and the canine initiated 49 and 38 days prenatally, respectively. These results contribute to a better understanding of dental development in Anapithecus and may provide a window into the dental development of the last common ancestor of hominoids and cercopithecoids.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Dente/crescimento & desenvolvimento , Fatores Etários , Animais , Áustria , Alemanha , Humanos , Hungria , Síncrotrons
9.
J Hum Evol ; 113: 162-172, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29054166

RESUMO

Enamel thickness figures prominently in studies of human evolution, particularly for taxonomy, phylogeny, and paleodietary reconstruction. Attention has focused on molar teeth, through the use of advanced imaging technologies and novel protocols. Despite the important results achieved thus far, further work is needed to investigate all tooth classes. We apply a recent approach developed for anterior teeth to investigate the 3D enamel thickness of Neandertal and modern human (MH) canines. In terms of crown size, the values obtained for both upper and lower unworn/slightly worn canines are significantly greater in Neandertals than in Upper Paleolithic and recent MH. The 3D relative enamel thickness (RET) is significantly lower in Neandertals than in MH. Moreover, differences in 3D RET values between the two groups appear to decrease in worn canines beginning from wear stage 3, suggesting that both the pattern and the stage of wear may have important effects on the 3D RET value. Nevertheless, the 3D average enamel thickness (AET) does not differ between the two groups. In both groups, 3D AET and 3D RET indices are greater in upper canines than in lower canines, and overall the enamel is thicker on the occlusal half of the labial aspect of the crown, particularly in MH. By contrast, the few early modern humans investigated show the highest volumes of enamel while for all other components of 3D enamel, thickness this group holds an intermediate position between Neandertals and recent MH. Overall, our study supports the general findings that Neandertals have relatively thinner enamel than MH (as also observed in molars), indicating that unworn/slightly worn canines can be successfully used to discriminate between the two groups. Further studies, however, are needed to understand whether these differences are functionally related or are the result of pleiotropic or genetic drift effects.


Assuntos
Esmalte Dentário/anatomia & histologia , Fósseis/anatomia & histologia , Dente Molar/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Paleodontologia , Dente/anatomia & histologia , Microtomografia por Raio-X/métodos , Animais , Humanos , Imageamento Tridimensional
10.
Am J Phys Anthropol ; 164(1): 193-202, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28605019

RESUMO

OBJECTIVES: We describe a hominin permanent lower left third premolar unearthed in 1997 at Walou Cave (Belgium), found in direct association with a Mousterian lithic industry, in a layer directly dated to 40-38,000 years BP. MATERIALS AND METHODS: The taxonomical attribution of the tooth is addressed through comparative morphometric analyses, and stable isotope analyses aimed at determining the diet of the individual. RESULTS: The Walou P3 plots within the Neandertal range of variation and is significantly different from recent modern humans in all morphometric assessments. The isotope data showed that like other Neandertals, the Walou individual acquired its dietary proteins primarily from terrestrial food sources. DISCUSSION: We discuss the implications of the existence of a clearly Neandertal premolar dating to the period of the Middle to Upper Paleolithic transition in the Meuse river basin.


Assuntos
Dente Pré-Molar/anatomia & histologia , Dente Pré-Molar/patologia , Homem de Neandertal/anatomia & histologia , Animais , Bélgica , Dieta , História Antiga , Paleodontologia
11.
J Anat ; 229(4): 568-76, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27231028

RESUMO

Fibrolamellar bone is a transient primary bone tissue found in fast-growing juvenile mammals, several species of birds and large dinosaurs. Despite the fact that this bone tissue is prevalent in many species, the vast majority of bone structural and mechanical studies are focused on human osteonal bone tissue. Previous research revealed the orthotropic structure of fibrolamellar bone, but only a handful of experiments investigated its elastic properties, mostly in the axial direction. Here we have performed for the first time an extensive biomechanical study to determine the elastic properties of fibrolamellar bone in all three orthogonal directions. We have tested 30 fibrolamellar bone cubes (2 × 2 × 2 mm) from the femora of five juvenile white-tailed deer (Odocoileus virginianus) in compression. Each bone cube was compressed iteratively, within its elastic region, in the axial, transverse and radial directions, and bone stiffness (Young's modulus) was recorded. Next, the cubes were kept for 7 days at 4 °C and then compressed again to test whether bone stiffness had significantly deteriorated. Our results demonstrated that bone tissue in the deer femora has an orthotropic elastic behavior where the highest stiffness was in the axial direction followed by the transverse and the radial directions (21.6 ± 3.3, 17.6 ± 3.0 and 14.9 ± 1.9 Gpa, respectively). Our results also revealed a slight non-significant decrease in bone stiffness after 7 days. Finally, our sample size allowed us to establish that population variance was much bigger in the axial direction than the radial direction, potentially reflecting bone adaptation to the large diversity in loading activity between individuals in the loading direction (axial) compared with the normal (radial) direction. This study confirms that the mechanically well-studied human transverse-isotropic osteonal bone is just one possible functional adaptation of bone tissue and that other vertebrate species use an orthotropic bone tissue structure which is more suitable for their mechanical requirements.


Assuntos
Elasticidade/fisiologia , Fêmur/fisiologia , Envelhecimento , Animais , Fenômenos Biomecânicos , Cervos , Módulo de Elasticidade
12.
Biology (Basel) ; 13(1)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38248474

RESUMO

The "teeth-as-tools" hypothesis posits that Neanderthals used their anterior teeth as a tool or a third hand for non-dietary purposes. These non- or para-masticatory activities (e.g., tool-making or food preparation prior to ingestion) have also been described in other past and extant human populations, and other Primates. Cementum is the mineralized tissue that covers the tooth root surface and anchors it to the alveolar bone. Under certain conditions (e.g., mechanical stress, infection), its production becomes excessive (i.e., beyond the physiological state) and is called 'hypercementosis'. Several studies in dental anthropology have established a correlation between the teeth-as-tools and hypercementosis. The present work aims to characterize the different patterns of cementum apposition on archeological teeth and discuss their supposed etiology. Using microtomography and confocal microscopy, the patterns of cementum apposition (i.e., thickness, location, and surface characteristics) were analyzed in 35 hypercementotic teeth (Sains-en-Gohelle, France; 7th-17th c. A.D.). Four groups were identified with distinct hypercementosis patterns: (1) impacted, (2) infected, (3) hypofunctional, and (4) hyperfunctional teeth. Characterizing hypercementosis can contribute to documenting the oral health status (paleopathology) and/or masticatory activity of individuals, even from isolated teeth. This has implications for the study of fossil hominins, particularly Neanderthals, known for their use of anterior teeth as tools and frequent and substantial occurrence of hypercementosis.

13.
J Hum Evol ; 64(3): 169-93, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23266488

RESUMO

Comparing modern humans and Neanderthals, we have previously shown that recent modern humans (RMH) and Neanderthals differ in anterior root lengths, and that this difference cannot be explained by group differences in overall mandibular size. Here, we first document the evolutionary changes of root size and shape of the anterior upper and lower dentition in a broad chronological and geographical framework. We then use the size and shape differences between RMH and Neanderthals to classify several isolated teeth from Kebara cave and Steinheim, and to interpret the anterior tooth roots of the Tabun C2 mandible. Our samples comprise permanent mandibular and maxillary incisors and canines from early Homo, Neanderthals, as well as extant and fossil modern humans (N = 359). In addition to root length, we measured cervical root diameter and area, total root volume, root pulp volume and root surface area from µCT scans. We quantified root shape variation using geometric morphometrics. Our results show that Neanderthals have not only significantly larger anterior roots than RMH overall, but also different root shapes for each tooth type. In the context of the 'teeth-as-tools' hypothesis, this could be an adaptation to better sustain high or frequent loads on the front teeth. We demonstrate that the two isolated incisors stored with the Steinheim skull are very likely recent. Tabun C2 shows an anterior dentition similar in size and shape to Neanderthals while its molar roots are non-Neanderthal. Two of the five isolated teeth from Kebara are classified as Neanderthals. Interestingly, early modern humans overlap with Neanderthals and RMH in root size and shape. Anterior roots of the Lower and Middle Pleistocene specimens are at least as large as Neanderthals, suggesting that Neanderthals retained a primitive pattern, which should prompt caution in the assessment of the earliest forms of modern humans.


Assuntos
Homem de Neandertal/anatomia & histologia , Raiz Dentária/anatomia & histologia , Animais , Antropologia Física , Dente Canino/anatomia & histologia , Feminino , Humanos , Hipercementose , Incisivo/anatomia & histologia , Masculino , Análise Multivariada , Crânio/anatomia & histologia , Coroa do Dente/anatomia & histologia , Microtomografia por Raio-X
14.
Arch Oral Biol ; 146: 105599, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495812

RESUMO

OBJECTIVES: This paper aims to better define hypercementosis, investigate its described potential aetiologies, and determine whether there are different patterns of cementum apposition and if they are a function of their supposed aetiology. DESIGN: A literature review was undertaken using the Medline, DOSS, Scopus and Cochrane Library electronic databases. Two co-authors selected the published works independently, extracted the data in accordance with the PRISMA statement. RESULTS: Among 546 articles, 75 articles were finally selected. Eight different supposed aetiologies were identified: (1) intensive masticatory effort, (2) systemic disease, (3) carious lesion and apical periodontitis, (4) impaction, (5) periodontal disease, (6) concrescence, (7) super-eruption, and (8) drugs. Some of these aetiologies can be combined in the same tooth. Hypercementosis manifestations are various in nature and extent with different patterns that may be aetiology-specific. To improve the description and associated consistency in the characterisation of hypercementosis, in this review but also in future studies, we propose a new qualitative scoring system to quickly characterise hypercementosis and determine its most relevant aetiology. CONCLUSIONS: This systematic review demonstrates that hypercementosis is a complex and not yet well-defined condition. Some forms of apposition are specific to a given aetiology. The hypercementosis characterisation may contribute to document the oral condition and/or the individuals masticatory activity.


Assuntos
Hipercementose , Periodontite Periapical , Doenças Periodontais , Dente Impactado , Humanos , Hipercementose/patologia , Cemento Dentário , Dente Impactado/patologia , Doenças Periodontais/patologia , Periodontite Periapical/patologia
15.
J Anthropol Sci ; 100: 123-142, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37561595

RESUMO

El Castillo cave is a well-known site because of its Paleolithic archaeology and parietal rock art. This paper is focused on the human remains found by V. Cabrera in the Mousterian Unit XX assigned to MIS 4 and early MIS 3. The fossils consist of one upper left second premolar (ULP4), one incomplete proximal hand phalanx, and one partial femoral head. The tooth and the phalanx were assigned to adults, whereas the femoral head belonged to an immature individual due to the absence of fusion traces to the metaphyseal surface. The external morphology and metrical characterization of the Castillo-1466 (ULP4) tooth crown was quantified and compared to the variability of other Neanderthal dental remains and a sample of modern human populations. We also quantified its 3D enamel thickness distribution, its roots morphology, as well as the presence of chipping, and their possible relation to masticatory or paramasticatory activities. Castillo-1466 shows crown dimensions compatible with middle-sized Neanderthal teeth, but with a remarkably thicker enamel than other Neanderthal premolars, such as Marillac 13. The femoral head and the hand phalanx fragment are compared to published values for Neanderthals, although both partial fossils lack diagnostic features precluding any clear taxonomic diagnostic. Therefore, their attribution to Neanderthals is assumed based on the dating of the layers in which they were discovered. El Castillo cave Mousterian fossils represent another contribution to the knowledge of the Middle Paleolithic populations of Northern Spain, where different sites along the Cantabrian mountains yielded several human remains assigned to MIS 4 and early MIS 3.

16.
Biology (Basel) ; 12(12)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38132281

RESUMO

Zinc is incorporated into enamel, dentine and cementum during tooth growth. This work aimed to distinguish between the processes underlying Zn incorporation and Zn distribution. These include different mineralisation processes, the physiological events around birth, Zn ingestion with diet, exposure to the oral environment during life and diagenetic changes to fossil teeth post-mortem. Synchrotron X-ray Fluorescence (SXRF) was used to map zinc distribution across longitudinal polished ground sections of both deciduous and permanent modern human, great ape and fossil hominoid teeth. Higher resolution fluorescence intensity maps were used to image Zn in surface enamel, secondary dentine and cementum, and at the neonatal line (NNL) and enamel-dentine-junction (EDJ) in deciduous teeth. Secondary dentine was consistently Zn-rich, but the highest concentrations of Zn (range 197-1743 ppm) were found in cuspal, mid-lateral and cervical surface enamel and were similar in unerupted teeth never exposed to the oral environment. Zinc was identified at the NNL and EDJ in both modern and fossil deciduous teeth. In fossil specimens, diagenetic changes were identified in various trace element distributions but only demineralisation appeared to markedly alter Zn distribution. Zinc appears to be tenacious and stable in fossil tooth tissues, especially in enamel, over millions of years.

17.
Biology (Basel) ; 12(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829463

RESUMO

Leprosy can lead to blood depletion in Zn, Ca, Mg, and Fe and blood enrichment in Cu. In late medieval Europe, minerals were used to treat leprosy. Here, physiological responses to leprosy and possible evidence of treatment are investigated in enamel, dentine, and cementum of leprosy sufferers from medieval Denmark (n = 12) and early 20th century Romania (n = 2). Using SXRF and LA-ICP-TOFMS, 12 elements were mapped in 15 tooth thin sections, and the statistical covariation of paired elements was computed to assess their biological relevance. The results show marked covariations in the Zn, Ca, and Mg distributions, which are compatible with clinical studies but cannot be directly attributed to leprosy. Minerals used historically as a treatment for leprosy show no detectable intake (As, Hg) or a diffuse distribution (Pb) related to daily ingestion. Intense Pb enrichments indicate acute incorporations of Pb, potentially through the administration of Pb-enriched medication or the mobilization of Pb from bone stores to the bloodstream during intense physiological stress related to leprosy. However, comparisons with a healthy control group are needed to ascertain these interpretations. The positive correlations and the patterns observed between Pb and essential elements may indicate underlying pathophysiological conditions, demonstrating the potential of SXRF and LA-ICP-TOFMS for paleopathological investigations.

18.
Science ; : eadd9115, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824630

RESUMO

In Africa, the scarcity of hominin remains found in direct association with stone tools has hindered attempts to link Homo habilis and Homo erectus with particular lithic industries. The infant mandible discovered in level E at Garba IV (Melka Kunture) on the highlands of Ethiopia is critical to this issue due to its direct association with an Oldowan lithic industry. Here, we use synchrotron imaging to examine the internal morphology of the unerupted permanent dentition and confirm its identification as Homo erectus. Additionally, we utilize new palaeomagnetic ages to show that (i) the mandible in level E is ca. 2 million-years-old, and represents one of the earliest Homo erectus fossils, and (ii) that overlying level D, ca. 1.95 million-years-old, contains the earliest known Acheulean assemblage.

19.
J Hum Evol ; 63(5): 667-81, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23000085

RESUMO

Tooth root length has been shown to taxonomically distinguish Neanderthals from modern humans. However, this may result from differences in jaw size between both taxa, although most previous studies have revealed a very low or non-existent correlation between tooth size and jaw size in recent modern humans. We therefore investigated, within a broader taxonomical frame, to what extent measurements on the anterior tooth roots and the symphyseal region covary. Our samples comprise permanent mandibular incisors and canines from Mauer, Neanderthals, and extant and fossil modern humans sensu lato. Using micro-computed tomography, we took linear and cross-sectional surface area measurements of the roots and the symphyseal region and calculated the root volume. We also measured 3D landmarks to quantify the overall size of the mandible using centroid size. Furthermore, we analyzed the relationship between root size and symphyseal shape, based on Procrustes shape variables of semi-landmarks along the symphyseal outline. Our results show that Neanderthals have significantly larger anterior tooth roots than recent modern humans in terms of root length, mid-sagittal surface area and volume, even after correction for mandibular size. In contrast, symphyseal height and width do not differ significantly between both taxa, whereas, without scaling, the mid-sagittal symphyseal surface area and the centroid size of the mandible do differ. Importantly, no significant correlation was found between any of the root and symphyseal measurements after correction for overall mandibular size. The shape analyses revealed that Neanderthals have a vertical symphyseal profile with an evenly-thick symphysis, whereas recent modern humans display an unevenly-thick symphysis, comprising a pronounced incurvatio mandibularis and a bony chin. These results suggest a negative evolutionary allometry for the recent modern human anterior root size. Therefore, root length and other root dimensions can be considered taxonomically relevant for distinguishing Neanderthals from modern humans.


Assuntos
Fósseis , Mandíbula/anatomia & histologia , Homem de Neandertal/anatomia & histologia , Raiz Dentária/anatomia & histologia , Animais , Feminino , Masculino , Estatísticas não Paramétricas , Tomografia Computadorizada por Raios X , Raiz Dentária/diagnóstico por imagem
20.
J Med Imaging (Bellingham) ; 9(3): 031505, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35310450

RESUMO

Purpose: Dental calculus forms on teeth during the life of an individual and its investigation can yield information about diet, health status, and environmental pollution. Currently, the analytical techniques used to visualize the internal structure of human dental calculus and entrapped inclusions are limited and require destructive sampling, which cannot always be justified. Approach: We used propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SR- µ CT ) to non-destructively examine the internal organization of dental calculus, including its microstructure and entrapped inclusions, on both modern and archeological samples. Results: The virtual histological exploration of the samples shows that PPC-SR- µ CT is a powerful approach to visualize the internal organization of dental calculus. We identified several important features, including previously undetected negative imprints of enamel and dentine growth markers (perikymata and periradicular bands, respectively), the non-contiguous structure of calculus layers with multiple voids, and entrapped plant remains. Conclusions: PPC-SR- µ CT is an effective technique to explore dental calculus structural organization, and is especially powerful for enabling the identification of inclusions. The non-destructive nature of synchrotron tomography helps protect samples for future research. However, the irregular layers and frequent voids reveal a high heterogeneity and variability within calculus, with implications for research focusing on inclusions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA