Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nat Immunol ; 25(7): 1193-1206, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834865

RESUMO

Immune cells experience large cell shape changes during environmental patrolling because of the physical constraints that they encounter while migrating through tissues. These cells can adapt to such deformation events using dedicated shape-sensing pathways. However, how shape sensing affects immune cell function is mostly unknown. Here, we identify a shape-sensing mechanism that increases the expression of the chemokine receptor CCR7 and guides dendritic cell migration from peripheral tissues to lymph nodes at steady state. This mechanism relies on the lipid metabolism enzyme cPLA2, requires nuclear envelope tensioning and is finely tuned by the ARP2/3 actin nucleation complex. We also show that this shape-sensing axis reprograms dendritic cell transcription by activating an IKKß-NF-κB-dependent pathway known to control their tolerogenic potential. These results indicate that cell shape changes experienced by immune cells can define their migratory behavior and immunoregulatory properties and reveal a contribution of the physical properties of tissues to adaptive immunity.


Assuntos
Movimento Celular , Células Dendríticas , Homeostase , Linfonodos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Linfonodos/imunologia , Linfonodos/citologia , Receptores CCR7/metabolismo , Camundongos , Movimento Celular/imunologia , Forma Celular , NF-kappa B/metabolismo , Camundongos Knockout , Transdução de Sinais/imunologia , Quinase I-kappa B/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo
2.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38189779

RESUMO

The mechanisms whereby Eomes controls tissue accumulation of T cells and strengthens inflammation remain ill-defined. Here, we show that Eomes deletion in antigen-specific CD4+ T cells is sufficient to protect against central nervous system (CNS) inflammation. While Eomes is dispensable for the initial priming of CD4+ T cells, it is required for long-term maintenance of CNS-infiltrating CD4+ T cells. We reveal that the impact of Eomes on effector CD4+ T cell longevity is associated with sustained expression of multiple genes involved in mitochondrial organization and functions. Accordingly, epigenetic studies demonstrate that Eomes supports mitochondrial function by direct binding to either metabolism-associated genes or mitochondrial transcriptional modulators. Besides, the significance of these findings was confirmed in CD4+ T cells from healthy donors and multiple sclerosis patients. Together, our data reveal a new mechanism by which Eomes promotes severity and chronicity of inflammation via the enhancement of CD4+ T cell mitochondrial functions and resistance to stress-induced cell death.


Assuntos
Linfócitos T CD4-Positivos , Sistema Nervoso Central , Proteínas com Domínio T , Humanos , Morte Celular , Inflamação , Mitocôndrias , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA