Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(11): 3403-3414, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31914418

RESUMO

CRISPR-Cas systems provide bacteria with adaptive immunity against viruses. During spacer adaptation, the Cas1-Cas2 complex selects fragments of foreign DNA, called prespacers, and integrates them into CRISPR arrays in an orientation that provides functional immunity. Cas4 is involved in both the trimming of prespacers and the cleavage of protospacer adjacent motif (PAM) in several type I CRISPR-Cas systems, but how the prespacers are processed in systems lacking Cas4, such as the type I-E and I-F systems, is not understood. In Escherichia coli, which has a type I-E system, Cas1-Cas2 preferentially selects prespacers with 3' overhangs via specific recognition of a PAM, but how these prespacers are integrated in a functional orientation in the absence of Cas4 is not known. Using a biochemical approach with purified proteins, as well as integration, prespacer protection, sequencing, and quantitative PCR assays, we show here that the bacterial 3'-5' exonucleases DnaQ and ExoT can trim long 3' overhangs of prespacers and promote integration in the correct orientation. We found that trimming by these exonucleases results in an asymmetric intermediate, because Cas1-Cas2 protects the PAM sequence, which helps to define spacer orientation. Our findings implicate the E. coli host 3'-5' exonucleases DnaQ and ExoT in spacer adaptation and reveal a mechanism by which spacer orientation is defined in E. coli.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Exonucleases/metabolismo , Sequência de Bases , Proteínas Associadas a CRISPR/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Escherichia coli/metabolismo , Motivos de Nucleotídeos/genética , Análise de Sequência de DNA
2.
J Biol Chem ; 294(26): 10290-10299, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31110048

RESUMO

CRISPR-Cas systems are RNA-based immune systems that protect many prokaryotes from invasion by viruses and plasmids. Type III CRISPR systems are unique, as their targeting mechanism requires target transcription. Upon transcript binding, DNA cleavage by type III effector complexes is activated. Type III systems must differentiate between invader and native transcripts to prevent autoimmunity. Transcript origin is dictated by the sequence that flanks the 3' end of the RNA target site (called the PFS). However, how the PFS is recognized may vary among different type III systems. Here, using purified proteins and in vitro assays, we define how the type III-B effector from the hyperthermophilic bacterium Thermotoga maritima discriminates between native and invader transcripts. We show that native transcripts are recognized by base pairing at positions -2 to -5 of the PFS and by a guanine at position -1, which is not recognized by base pairing. We also show that mismatches with the RNA target are highly tolerated in this system, except for those nucleotides adjacent to the PFS. These findings define the target requirement for the type III-B system from T. maritima and provide a framework for understanding the target requirements of type III systems as a whole.


Assuntos
Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Clivagem do DNA , Sistema Imunitário , RNA/metabolismo , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Pareamento de Bases , Proteínas Associadas a CRISPR/genética , Plasmídeos/genética , RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA