Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anesth Analg ; 135(1): 6-19, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35389378

RESUMO

Patient safety is a core principle of anesthesia care worldwide. The specialty of anesthesiology has been a leader in medicine for the past half century in pursuing patient safety research and implementing standards of care and systematic improvements in processes of care. Together, these efforts have dramatically reduced patient harm associated with anesthesia. However, improved anesthesia patient safety has not been uniformly obtained worldwide. There are unique differences in patient safety outcomes between countries and regions in the world. These differences are often related to factors such as availability, support, and use of health care resources, trained personnel, patient safety outcome data collection efforts, standards of care, and cultures of safety and teamwork in health care facilities. This article provides insights from national anesthesia society leaders from 13 countries around the world. The countries they represent are diverse geographically and in health care resources. The authors share their countries' current and future initiatives in anesthesia patient safety. Ten major patient safety issues are common to these countries, with several of these focused on the importance of extending initiatives into the full perioperative as well as intraoperative environments. These issues may be used by anesthesia leaders around the globe to direct collaborative efforts to improve the safety of patients undergoing surgery and anesthesia in the coming decade.


Assuntos
Anestesia , Anestesiologia , Anestesia/efeitos adversos , Humanos , Segurança do Paciente
2.
Front Med (Lausanne) ; 9: 824395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280892

RESUMO

Background: Accidental hypothermia (AH) is an unintended decrease in body core temperature (BCT) to below 35°C. We present an update on physiological/pathophysiological changes associated with AH and rewarming from hypothermic cardiac arrest (HCA). Temperature Regulation and Metabolism: Triggered by falling skin temperature, Thyrotropin-Releasing Hormone (TRH) from hypothalamus induces release of Thyroid-Stimulating Hormone (TSH) and Prolactin from pituitary gland anterior lobe that stimulate thyroid generation of triiodothyronine and thyroxine (T4). The latter act together with noradrenaline to induce heat production by binding to adrenergic ß3-receptors in fat cells. Exposed to cold, noradrenaline prompts degradation of triglycerides from brown adipose tissue (BAT) into free fatty acids that uncouple metabolism to heat production, rather than generating adenosine triphosphate. If BAT is lacking, AH occurs more readily. Cardiac Output: Assuming a 7% drop in metabolism per °C, a BCT decrease of 10°C can reduce metabolism by 70% paralleled by a corresponding decline in CO. Consequently, it is possible to maintain adequate oxygen delivery provided correctly performed cardiopulmonary resuscitation (CPR), which might result in approximately 30% of CO generated at normal BCT. Liver and Coagulation: AH promotes coagulation disturbances following trauma and acidosis by reducing coagulation and platelet functions. Mean prothrombin and partial thromboplastin times might increase by 40-60% in moderate hypothermia. Rewarming might release tissue factor from damaged tissues, that triggers disseminated intravascular coagulation. Hypothermia might inhibit platelet aggregation and coagulation. Kidneys: Renal blood flow decreases due to vasoconstriction of afferent arterioles, electrolyte and fluid disturbances and increasing blood viscosity. Severely deranged renal function occurs particularly in the presence of rhabdomyolysis induced by severe AH combined with trauma. Conclusion: Metabolism drops 7% per °C fall in BCT, reducing CO correspondingly. Therefore, it is possible to maintain adequate oxygen delivery after 10°C drop in BCT provided correctly performed CPR. Hypothermia may facilitate rhabdomyolysis in traumatized patients. Victims suspected of HCA should be rewarmed before being pronounced dead. Rewarming avalanche victims of HCA with serum potassium > 12 mmol/L and a burial time >30 min with no air pocket, most probably be futile.

3.
Front Med (Lausanne) ; 8: 641633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055829

RESUMO

Introduction: This systematic review and meta-analysis aims at comparing outcomes of rewarming after accidental hypothermic cardiac arrest (HCA) with cardiopulmonary bypass (CPB) or/and extracorporeal membrane oxygenation (ECMO). Material and Methods: Literature searches were limited to references with an abstract in English, French or German. Additionally, we searched reference lists of included papers. Primary outcome was survival to hospital discharge. We assessed neurological outcome, differences in relative risks (RR) of surviving, as related to the applied rewarming technique, sex, asphyxia, and witnessed or unwitnessed HCA. We calculated hypothermia outcome prediction probability score after extracorporeal life support (HOPE) in patients in whom we found individual data. P < 0.05 considered significant. Results: Twenty-three case observation studies comprising 464 patients were included in a meta-analysis comparing outcomes of rewarming with CPB or/and ECMO. One-hundred-and-seventy-two patients (37%) survived to hospital discharge, 76 of 245 (31%) after CPB and 96 of 219 (44 %) after ECMO; 87 and 75%, respectively, had good neurological outcomes. Overall chance of surviving was 41% higher (P = 0.005) with ECMO as compared with CPB. A man and a woman had 46% (P = 0.043) and 31% (P = 0.115) higher chance, respectively, of surviving with ECMO as compared with CPB. Avalanche victims had the lowest chance of surviving, followed by drowning and people losing consciousness in cold environments. Assessed by logistic regression, asphyxia, unwitnessed HCA, male sex, high initial body temperature, low pH and high serum potassium (s-K+) levels were associated with reduced chance of surviving. In patients displaying individual data, overall mean predictive surviving probability (HOPE score; n = 134) was 33.9 ± 33.6% with no significant difference between ECMO and CPB-treated patients. We also surveyed 80 case reports with 96 victims of HCA, who underwent resuscitation with CPB or ECMO, without including them in the meta-analysis. Conclusions: The chance of surviving was significantly higher after rewarming with ECMO, as compared to CPB, and in patients with witnessed compared to unwitnessed HCA. Avalanche victims had the lowest probability of surviving. Male sex, high initial body temperature, low pH, and high s-K+ were factors associated with low surviving chances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA