Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nano Lett ; 23(24): 11719-11726, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38078825

RESUMO

Ionic transport through a graphene biomimetic subnanometer (sub-nm) pore of arbitrary shape and realistically decorated by intrinsic negatively charged sites is investigated by all-atom molecular dynamics (MD) simulations. In the presence of external electric fields, cation trapping-assisted translocation occurs in the vicinity of the 2D subnanometer pore, while the anion current is blocked by the negative charges. The adsorbed cations in such asymmetrically charged nanopores are located on the top of the nanopore instead of blocking the pore, as suggested previously in highly symmetric pores such as crown ethers. Our analysis of the different types of energy involved in ion translocations indicates that electrostatics is the dominant factor controlling ion transfer across these sub-nm pores. A physical model based on the thermionic emission formalism to account for the free energy barriers to ion flow reproduces the I-V characteristics.

2.
Nano Lett ; 17(7): 4223-4230, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28592108

RESUMO

A long-standing problem in the application of solid-state nanopores is the lack of the precise control over the geometry of artificially formed pores compared to the well-defined geometry in their biological counterpart, that is, protein nanopores. To date, experimentally investigated solid-state nanopores have been shown to adopt an approximately circular shape. In this Letter, we investigate the geometrical effect of the nanopore shape on ionic blockage induced by DNA translocation using triangular h-BN nanopores and approximately circular molybdenum disulfide (MoS2) nanopores. We observe a striking geometry-dependent ion scattering effect, which is further corroborated by a modified ionic blockage model. The well-acknowledged ionic blockage model is derived from uniform ion permeability through the 2D nanopore plane and hemisphere like access region in the nanopore vicinity. On the basis of our experimental results, we propose a modified ionic blockage model, which is highly related to the ionic profile caused by geometrical variations. Our findings shed light on the rational design of 2D nanopores and should be applicable to arbitrary nanopore shapes.

3.
Proc Natl Acad Sci U S A ; 110(42): 16748-53, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24082108

RESUMO

By using the nonequilibrium Green's function technique, we show that the shape of the edge, the carrier concentration, and the position and size of a nanopore in graphene nanoribbons can strongly affect its electronic conductance as well as its sensitivity to external charges. This technique, combined with a self-consistent Poisson-Boltzmann formalism to account for ion charge screening in solution, is able to detect the rotational and positional conformation of a DNA strand inside the nanopore. In particular, we show that a graphene membrane with quantum point contact geometry exhibits greater electrical sensitivity than a uniform armchair geometry provided that the carrier concentration is tuned to enhance charge detection. We propose a membrane design that contains an electrical gate in a configuration similar to a field-effect transistor for a graphene-based DNA sensing device.


Assuntos
DNA/análise , Grafite/química , Membranas Artificiais , Pontos Quânticos , Transistores Eletrônicos , Porosidade
4.
Nano Lett ; 15(12): 8322-30, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26581231

RESUMO

We investigate by means of molecular dynamics simulations stretch-induced stepwise translocation of single-stranded DNA (ssDNA) through graphene nanopores. The intrinsic stepwise DNA motion, found to be largely independent of size and shape of the graphene nanopore, is brought about through alternating conformational changes between spontaneous adhesion of DNA bases to the rim of the graphene nanopore and unbinding due to mechanical force or electric field. The adhesion reduces the DNA bases' vertical conformational fluctuations, facilitating base detection and recognition. A graphene membrane shaped as a quantum point contact permits, by means of transverse electronic conductance measurement, detection of the stepwise translocation of the DNA as predicted through quantum mechanical Green's function-based transport calculations. The measurement scheme described opens a route to enhance the signal-to-noise ratio not only by slowing down DNA translocation to provide sufficient time for base recognition but also by stabilizing single DNA bases and, thereby, reducing thermal noise.


Assuntos
DNA de Cadeia Simples/química , Grafite/química , Nanoporos , Transporte Biológico , Simulação de Dinâmica Molecular
5.
Nanotechnology ; 26(13): 134005, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25765702

RESUMO

A graphene membrane conductor containing a nanopore in a quantum point contact geometry is a promising candidate to sense, and potentially sequence, DNA molecules translocating through the nanopore. Within this geometry, the shape, size, and position of the nanopore as well as the edge configuration influences the membrane conductance caused by the electrostatic interaction between the DNA nucleotides and the nanopore edge. It is shown that the graphene conductance variations resulting from DNA translocation can be enhanced by choosing a particular geometry as well as by modulating the graphene Fermi energy, which demonstrates the ability to detect conformational transformations of a double-stranded DNA, as well as the passage of individual base pairs of a single-stranded DNA molecule through the nanopore.


Assuntos
DNA de Cadeia Simples/isolamento & purificação , DNA/isolamento & purificação , Grafite/química , Pontos Quânticos , DNA/química , DNA de Cadeia Simples/química , Nanoporos , Sensibilidade e Especificidade , Análise de Sequência de DNA
6.
Nanotechnology ; 25(44): 445105, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25325530

RESUMO

Mechanical manipulation of DNA by forced extension can lead double-stranded DNA (dsDNA) to structurally transform from a helical form to a linear zipper-like form. By employing classical molecular dynamics and quantum mechanical nonequilibrium Green's function-based transport simulations, we show the ability of graphene nanopores to discern different dsDNA conformations, in a helical to zipper transition, using transverse electronic conductance. In particular, conductance oscillations due to helical dsDNA vanish as dsDNA extends from a helical form to a zipper form while it is transported through the nanopore. The predicted ability to detect conformational changes in dsDNA via transverse electronic conductance can widen the potential use of graphene-based nanosensors for DNA detection.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Eletrônica/métodos , Conformação Molecular , Nanoporos , Grafite , Humanos , Simulação de Dinâmica Molecular , Teoria Quântica , Eletricidade Estática
7.
J Comput Electron ; 13(4): 839-846, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25386110

RESUMO

In this paper, we present a computational model to describe the electrical response of a constricted graphene nanoribbon (GNR) to biomolecules translocating through a nanopore. For this purpose, we use a self-consistent 3D Poisson equation solver coupled with an accurate three-orbital tight-binding model to assess the ability for a gate electrode to modulate both the carrier concentration as well as the conductance in the GNR. We also investigate the role of electrolytic screening on the sensitivity of the conductance to external charges and find that the gate electrode can either suppress or enhance the screening of biomolecular charges in the nanopore depending on the value of its potential. Translocating a double-stranded DNA molecule along the pore axis imparted a large change in the conductance at particular gate voltages, suggesting that such a device can be used to sense translocating biomolecules and can be actively tuned to maximize its sensitivity.

8.
Nanoscale ; 16(27): 13106-13120, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38912547

RESUMO

We conduct all-atom molecular dynamics simulations to systematically investigate the underlying mechanisms governing ion transport through a sub-nanometer pore decorated with negative charges in a "Janus" MoSSe membrane. The charge imbalance between S and Se atoms on each side of the membrane induces different types of ion adsorption processes depending on the pore inner charge configuration, and the polarity of external biases, which leads to asymmetry in ionic I-V characteristics. Statistical analysis of the total translocation times including adsorption-desorption processes, and ion dwell times indicates that potassium ions predominantly remain adsorbed during their interaction with the membrane before undertaking a quick translocation through the pore. High applied biases suppress cation adsorption, which results in fast translocation with the current flow boosted by negative inner charges around the pore. We also show that in a membrane consisting of several "Janus" layers, the applied bias necessary to overcome the sub-nm pore barrier increases with the number of layers, providing control over the ionic current.

9.
Nanotechnology ; 23(25): 255501, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22652932

RESUMO

We have studied single-stranded DNA translocation through a semiconductor membrane consisting of doped p and n layers of Si forming a p-n-junction. Using Brownian dynamics simulations of the biomolecule in the self-consistent membrane-electrolyte potential obtained from the Poisson-Nernst-Planck model, we show that while polymer length is extended more than when its motion is constricted only by the physical confinement of the nanopore. The biomolecule elongation is particularly dramatic on the n-side of the membrane where the lateral membrane electric field restricts (focuses) the biomolecule motion more than on the p-side. The latter effect makes our membrane a solid-state analog of the α-hemolysin biochannel. The results indicate that the tunable local electric field inside the membrane can effectively control dynamics of a DNA in the channel to either momentarily trap, slow down or allow the biomolecule to translocate at will.


Assuntos
DNA de Cadeia Simples/química , Membranas Artificiais , Nanoporos , Semicondutores , Simulação por Computador , Eletrólitos , Nanotecnologia/métodos , Eletricidade Estática
10.
J Phys Chem Lett ; 13(16): 3602-3608, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35426690

RESUMO

Gating in ion transport is at the center of many vital living-substance transmission processes, and understanding how gating works at an atomic level is essential but intricate. However, our understanding and finite experimental findings of subcontinuum ion transport in subnanometer nanopores are still limited, which is out of reach of the classical continuum nanofluidics. Moreover, the influence of ion density on subcontinuum ion transport is poorly understood. Here we report the ion density-dependent dynamic conductance switching process in biomimetic graphene nanopores and explain the phenomenon by a reversible ion absorption mechanism. Our molecular dynamics simulations demonstrate that the cations near the graphene nanopore can interact with the surface charges on the nanopore, thereby realizing the switching of high- and low-conductance states. This work has deepened the understanding of gating in ion transport.


Assuntos
Grafite , Nanoporos , Biomimética , Transporte de Íons , Simulação de Dinâmica Molecular
11.
Microsyst Nanoeng ; 8: 27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310513

RESUMO

On-chip manipulation of charged particles using electrophoresis or electroosmosis is widely used for many applications, including optofluidic sensing, bioanalysis and macromolecular data storage. We hereby demonstrate a technique for the capture, localization, and release of charged particles and DNA molecules in an aqueous solution using tubular structures enabled by a strain-induced self-rolled-up nanomembrane (S-RuM) platform. Cuffed-in 3D electrodes that are embedded in cylindrical S-RuM structures and biased by a constant DC voltage are used to provide a uniform electrical field inside the microtubular devices. Efficient charged-particle manipulation is achieved at a bias voltage of <2-4 V, which is ~3 orders of magnitude lower than the required potential in traditional DC electrophoretic devices. Furthermore, Poisson-Boltzmann multiphysics simulation validates the feasibility and advantage of our microtubular charge manipulation devices over planar and other 3D variations of microfluidic devices. This work lays the foundation for on-chip DNA manipulation for data storage applications.

12.
ACS Nano ; 14(11): 16131-16139, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33155815

RESUMO

A systematic microscopic analysis of the various resistive effects involved in the electronic detection of single biomolecules in a nanopore of a MoS2 nanoribbon is presented. The variations of the transverse electronic current along the two-dimensional (2D) membrane due to the translocation of DNA and protein molecules through the pore are obtained by model calculations based on molecular dynamics (MD) and Boltzmann transport formalism, which achieved good agreement with the experimental data. Our analysis points to a self-consistent interaction among ions, charge carriers around the pore rim, and biomolecules. It provides a comprehensive understanding of the effects of the electrolyte concentration, pore size, nanoribbon geometry, and also the doping polarity of the nanoribbon on the electrical sensitivity of the nanopore in detecting biomolecules. These results can be utilized for fine-tuning the design parameters in the fabrication of highly sensitive 2D nanopore biosensors.


Assuntos
Técnicas Biossensoriais , Nanoporos , DNA , Molibdênio , Nanotecnologia
13.
Nat Commun ; 11(1): 1742, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32269230

RESUMO

Synthetic DNA-based data storage systems have received significant attention due to the promise of ultrahigh storage density and long-term stability. However, all known platforms suffer from high cost, read-write latency and error-rates that render them noncompetitive with modern storage devices. One means to avoid the above problems is using readily available native DNA. As the sequence content of native DNA is fixed, one can modify the topology instead to encode information. Here, we introduce DNA punch cards, a macromolecular storage mechanism in which data is written in the form of nicks at predetermined positions on the backbone of native double-stranded DNA. The platform accommodates parallel nicking on orthogonal DNA fragments and enzymatic toehold creation that enables single-bit random-access and in-memory computations. We use Pyrococcus furiosus Argonaute to punch files into the PCR products of Escherichia coli genomic DNA and accurately reconstruct the encoded data through high-throughput sequencing and read alignment.


Assuntos
Proteínas Argonautas/metabolismo , DNA/genética , Análise de Sequência de DNA , Sequência de Bases , Pyrococcus furiosus/enzimologia
14.
ACS Sens ; 3(5): 1032-1039, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29663800

RESUMO

We describe a scalable device design of a dense array of multiple nanopores made from nanoscale semiconductor materials to detect and identify translocations of many biomolecules in a massively parallel detection scheme. We use molecular dynamics coupled to nanoscale device simulations to illustrate the ability of this device setup to uniquely identify DNA parallel translocations. We show that the transverse sheet currents along membranes are immune to the crosstalk effects arising from simultaneous translocations of biomolecules through multiple pores, due to their ability to sense only the local potential changes. We also show that electronic sensing across the nanopore membrane offers a higher detection resolution compared to ionic current blocking technique in a multipore setup, irrespective of the irregularities that occur while fabricating the nanopores in a two-dimensional membrane.


Assuntos
DNA/análise , Nanoporos , Semicondutores , Membranas Artificiais , Simulação de Dinâmica Molecular
15.
J Phys Chem Lett ; 9(19): 5718-5725, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30226383

RESUMO

We use the electronic properties of 2D solid-state nanopore materials to propose a versatile and generally applicable biosensor technology by using a combination of molecular dynamics, nanoscale device simulations, and statistical signal processing algorithms. As a case study, we explore the classification of three epigenetic biomarkers, the methyl-CpG binding domain 1 (MBD-1), MeCP2, and γ-cyclodextrin, attached to double-stranded DNA to identify regions of hyper- or hypomethylations by utilizing a matched filter. We assess the sensing ability of the nanopore device to identify the biomarkers based on their characteristic electronic current signatures. Such a matched filter-based classifier enables real-time identification of the biomarkers that can be easily implemented on chip. This integration of a sensor with signal processing architectures could pave the way toward the development of a multipurpose technology for early disease detection.


Assuntos
Biomarcadores/metabolismo , Nanoporos , Algoritmos , Técnicas Biossensoriais , DNA/química , Condutividade Elétrica , Técnicas Eletroquímicas , Domínio de Ligação a CpG Metilada , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Semicondutores , gama-Ciclodextrinas/química
16.
J Phys Chem B ; 121(15): 3757-3763, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28035832

RESUMO

We investigate theoretically the ability of graphene nanopore membranes to detect methylated sites along a DNA molecule by electronic sheet current along the two-dimensional (2D) materials. Special emphasis is placed on the detection sensitivity changes due to pore size, shape, position, and the presence of defects around the nanopore in a membrane with constricted geometry. Enhanced sensitivity for detecting methylated CpG sites, labeled by methyl-CpG binding domain (MBD) proteins along a DNA molecule, is obtained for electronic transport through graphene midgap states caused by the constriction. A large square deviation from the graphene conductance with respect to the open nanopore is observed during the translocation of MBD proteins. This approach exhibits superior resolution in the detection of multiple methylated sites along the DNA compared to conventional ionic current blockade techniques.


Assuntos
Metilação de DNA , DNA/química , Elétrons , Grafite/química , Simulação de Dinâmica Molecular , Nanoporos
17.
Artigo em Inglês | MEDLINE | ID: mdl-29399640

RESUMO

DNA methylation is an epigenetic modification involving the addition of a methyl group to DNA, which is heavily involved in gene expression and regulation, thereby critical to the progression of diseases such as cancer. In this work we show that detection and localization of DNA methylation can be achieved with nanopore sensors made of two-dimensional (2D) materials such as graphene and molybdenum di-sulphide (MoS2). We label each DNA methylation site with a methyl-CpG binding domain protein (MBD1), and combine molecular dynamics simulations with electronic transport calculations to investigate the translocation of the methylated DNA-MBD1 complex through 2D material nanopores under external voltage biases. The passage of the MBD1-labeled methylation site through the pore is identified by dips in the current blockade induced by the DNA strand, as well as by peaks in the transverse electronic sheet current across the 2D layer. The position of the methylation sites can be clearly recognized by the relative positions of the dips in the recorded ionic current blockade with an estimated error ranging from 0% to 16%. Finally, we define the spatial resolution of the 2D material nanopore device as the minimal distance between two methylation sites identified within a single measurement, which is 15 base pairs by ionic current recognition, but as low as 10 base pairs by transverse electronic conductance detection, indicating better resolution with this latter technique. The present approach opens a new route for precise and efficient profiling of DNA methylation.

18.
Nat Commun ; 8: 15635, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28580930

RESUMO

Remarkable breakthroughs have established the functionality of graphene and carbon nanotube transistors as replacements to silicon in conventional computing structures, and numerous spintronic logic gates have been presented. However, an efficient cascaded logic structure that exploits electron spin has not yet been demonstrated. In this work, we introduce and analyse a cascaded spintronic computing system composed solely of low-dimensional carbon materials. We propose a spintronic switch based on the recent discovery of negative magnetoresistance in graphene nanoribbons, and demonstrate its feasibility through tight-binding calculations of the band structure. Covalently connected carbon nanotubes create magnetic fields through graphene nanoribbons, cascading logic gates through incoherent spintronic switching. The exceptional material properties of carbon materials permit Terahertz operation and two orders of magnitude decrease in power-delay product compared to cutting-edge microprocessors. We hope to inspire the fabrication of these cascaded logic circuits to stimulate a transformative generation of energy-efficient computing.

19.
ACS Nano ; 10(4): 4482-8, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26998639

RESUMO

Nanopores offer sensors for a broad range of nanoscale materials, in particular ones of biological origin such as single- and double-stranded DNA or DNA-protein complexes. In order to increase single-molecule sensitivity, it is desirable to control biomolecule motion inside nanopores. In the present study, we investigate how in the case of a double-stranded DNA the single-molecule sensitivity can be improved through bias voltages. For this purpose we carry out molecular dynamics simulations of the DNA inside nanopores in an electrically biased metallic membrane. Stabilization of DNA, namely, a reduction in thermal fluctuations, is observed under positive bias voltages, while negative voltages bring about only negligible stabilization. For positive biases the stabilization arises from electrostatic attraction between the negatively charged DNA backbone and the positively charged pore surface. Simulations on a teardrop-shaped pore show a transverse shift of DNA position toward the sharp end of the pore under positive bias voltages, suggesting the possibility to control DNA alignment inside nanopores through geometry shaping. The present findings open a feasible and efficient route to reduce thermal noise and, in turn, enhance the signal-to-noise ratio in single-molecule nanopore sensing.


Assuntos
DNA/análise , Nanoporos , Técnicas Biossensoriais/métodos , Difusão , Eletricidade , Metais/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Óxidos/química , Razão Sinal-Ruído , Eletricidade Estática
20.
Nanoscale Res Lett ; 9(1): 2413, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26088988

RESUMO

We provide a systematic and theoretical study of the electronic properties of a large number of impurities, vacancies, and adatoms in monolayer MoS2, including groups III and IV dopants, as well as magnetic transition metal atoms such as Mn, Fe, Co, V, Nb, and Ta. By using density functional theory over a 5 × 5 atomic cell, we identify the most promising element candidates for p-doping of MoS2. Specifically, we found VB group impurity elements, such as Ta, substituting Mo to achieve negative formation energy values with impurity states all sitting at less than 0.1 eV from the valence band maximum (VBM), making them the optimal p-type dopant candidates. Moreover, our 5 × 5 cell model shows that B, a group III element, can induce impurity states very close to the VBM with a low formation energy around 0.2 eV, which has not been reported previously. Among the magnetic impurities such as Mn, Fe, and Co with 1, 2, and 3 magnetic moments/atom, respectively, Mn has the lowest formation energy, the most localized spin distribution, and the nearest impurity level to the conduction band among those elements. Additionally, impurity levels and Fermi level for the above three elements are closer to the conduction band than the previous work (PCCP 16:8990-8996, 2014) which shows the possibility of n-type doping by Mn, thanks to our 5 × 5 cell model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA