Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Ultrasonics ; 94: 319-331, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30172556

RESUMO

The sensitivity of Lamb wave modes to a particular defect or instance of damage is dependent on various factors (e.g., the local strain energy density due to that wave mode). As a result, different modes will be more useful than others for damage detection and quantification, dependent on damage type and location. For example, prior work in the field has shown that out-of-plane modes may have a higher sensitivity than in-plane modes to surface defects in plates. The excitability of a certain data acquisition system and the corresponding resolution for damage imaging also varies with frequency. The aim of the present work was to develop a multi-mode damage imaging technique that enables characterization of damage type and size, general sensitivity to unknown damage types, higher resolution imaging, and detectability regardless of the data acquisition system used. A reverse-time migration (RTM) imaging algorithm was combined with a numerical simulator-the three-dimensional (3D) elastodynamic finite integration technique (EFIT)-to provide multi-mode damage imaging. The approach was applied to two simulated case studies featuring damaged isotropic plates. Sensitivities of damage type to wave mode were investigated by separating the A0 and S0 Lamb wave modes obtained from the resultant RTM wavefields.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31135358

RESUMO

Guided wave methodologies are among the established approaches for structural health monitoring (SHM). For guided wave data, being able to accurately estimate wave properties in the absence of ample measurements can greatly facilitate the often time-consuming and potentially expensive data acquisition procedure. Nevertheless, inherent complexities of the guided waves, including their multimodal and frequency dispersive nature, hinder processing, analysis, and behavior prediction. The severity of these complexities is even higher in anisotropic media, such as composites. Several methods, including sparse wavenumber analysis (SWA), have been proposed in the literature to characterize guided wave propagation by extracting wave characteristics in a particular medium from the information contained in a few measurements, and subsequently using this information for full wavefield prediction. In this paper, we investigate the efficacy of guided wave reconstruction techniques, based on SWA, for predicting the behavior of guided waves in composite materials. We implement these techniques on several experimental and simulation data sets. We study their performance in estimating the frequency-dependent (dispersive) and anisotropic velocities of guided waves and in reconstructing full wavefields from limited available information.

3.
Ultrasonics ; 86: 28-40, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29407279

RESUMO

The growing use of composite materials for aerospace applications has resulted in a need for quantitative nondestructive evaluation (NDE) methods appropriate for characterizing damage in composite components. NDE simulation tools, such as ultrasound models, can aid in enabling optimized inspection methods and establishing confidence in inspection capabilities. In this paper a mathematical approach using the Lebedev Finite Difference (LFD) method is presented for ultrasonic wave simulation in composites. Boundary condition equations for implementing stress-free boundaries (necessary for simulation of NDE scenarios) are also presented. Quantitative comparisons between LFD guided wave ultrasound simulation results, experimental guided wave data, and dispersion curves are described. Additionally, stability tests are performed to establish the LFD code behavior in the presence of stress-free boundaries and low-symmetry anisotropy. Results show that LFD is an appropriate approach for simulating ultrasound in anisotropic composite materials and that the method is stable in the presence of low-symmetry anisotropy and stress-free boundaries. Studies presented in this paper include guided wave simulation in hexagonal, monoclinic, triclinic and layered composite laminates.

4.
Ultrasonics ; 82: 272-288, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934616

RESUMO

Ultrasonic damage detection and characterization is commonly used in nondestructive evaluation (NDE) of aerospace composite components. In recent years there has been an increased development of guided wave based methods. In real materials and structures, these dispersive waves result in complicated behavior in the presence of complex damage scenarios. Model-based characterization methods utilize accurate three dimensional finite element models (FEMs) of guided wave interaction with realistic damage scenarios to aid in defect identification and classification. This work describes an inverse solution for realistic composite damage characterization by comparing the wavenumber-frequency spectra of experimental and simulated ultrasonic inspections. The composite laminate material properties are first verified through a Bayesian solution (Markov chain Monte Carlo), enabling uncertainty quantification surrounding the characterization. A study is undertaken to assess the efficacy of the proposed damage model and comparative metrics between the experimental and simulated output. The FEM is then parameterized with a damage model capable of describing the typical complex damage created by impact events in composites. The damage is characterized through a transdimensional Markov chain Monte Carlo solution, enabling a flexible damage model capable of adapting to the complex damage geometry investigated here. The posterior probability distributions of the individual delamination petals as well as the overall envelope of the damage site are determined.

5.
Ultrasonics ; 84: 187-200, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29154046

RESUMO

Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools.

6.
Ultrasonics ; 62: 56-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980617

RESUMO

Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method.

7.
Ultrasonics ; 62: 203-12, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26049731

RESUMO

Guided wavefield analysis methods for detection and quantification of crack damage in an aluminum plate are presented in this paper. New wavenumber components created by abrupt wave changes at the structural discontinuity are identified in the frequency-wavenumber spectra. It is shown that the new wavenumbers can be used to detect and characterize the crack dimensions. Two imaging based approaches, filter reconstructed imaging and spatial wavenumber imaging, are used to demonstrate how the cracks can be evaluated with wavenumber analysis. The filter reconstructed imaging is shown to be a rapid method to map the plate and any existing damage, but with less precision in estimating crack dimensions; while the spatial wavenumber imaging provides an intensity image of spatial wavenumber values with enhanced resolution of crack dimensions. These techniques are applied to simulated wavefield data, and the simulation based studies show that spatial wavenumber imaging method is able to distinguish cracks of different severities. Laboratory experimental validation is performed for a single crack case to confirm the methods' capabilities for imaging cracks in plates.

8.
Ultrasonics ; 54(1): 385-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23769180

RESUMO

Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed.


Assuntos
Aeronaves/instrumentação , Técnicas de Imagem por Elasticidade/métodos , Análise de Falha de Equipamento/instrumentação , Manufaturas/análise , Modelos Teóricos , Anisotropia , Simulação por Computador , Análise de Falha de Equipamento/métodos , Imageamento Tridimensional/métodos , Espalhamento de Radiação , Som
9.
Ultrasonics ; 53(7): 1217-26, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23602558

RESUMO

Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspections are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure and considerable setup time. Alternatively, a non-contact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure generated by permanently bonded transducers. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Based on simulation results, guidelines for application of the technique are developed. Finally, experimental wavefield data is obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage. The recorded wavefields are analyzed and wavenumber is measured to an accuracy of up to 8.5% in the region of shallow delaminations. These results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates. The technique can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time.

10.
Ultrasonics ; 52(2): 193-207, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21908011

RESUMO

We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.


Assuntos
Ultrassom , Análise de Elementos Finitos , Ultrassom/métodos
11.
Ultrasound Med Biol ; 37(8): 1340-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21684063

RESUMO

We have modeled the removal of emboli from cardiopulmonary bypass circuits via acoustic radiation force. Unless removed, emboli can result in cognitive deficit for those undergoing heart surgery with the use of extracorporeal circuits. There are a variety of mathematical formulations in the literature describing acoustic radiation force, but a lingering question that remains is how important viscosity of the blood and/or embolus is to the process. We implemented both inviscid and viscous models for acoustic radiation force on a sphere immersed in a fluid. We found that for this specific application, the inviscid model seems to be sufficient for predicting acoustic force upon emboli when compared with the chosen viscous model. Thus, the much simpler inviscid model could be used to optimize experimental techniques for ultrasonic emboli removal.


Assuntos
Ponte Cardiopulmonar/efeitos adversos , Embolia Aérea/diagnóstico por imagem , Ultrassom/instrumentação , Hemorreologia , Humanos , Modelos Teóricos , Ultrassonografia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA