Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2303567120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37556502

RESUMO

Lipid nanoparticles (LNPs) are a potent delivery technology that have made it possible for the recent clinical breakthroughs in mRNA therapeutics and vaccines. A key challenge to the broader implementation of mRNA therapeutics and vaccines is the development of technology to produce precisely defined LNP formulations, with throughput that can scale from discovery to commercial manufacturing and meet the stringent manufacturing standards of the pharmaceutical industry. To address these challenges, we have developed a microfluidic chip that incorporates 1×, 10×, or 256× LNP-generating units that achieve scalable production rates of up to 17 L/h of precisely defined LNPs. Using these chips, we demonstrate that LNP physical properties and potency in vivo are unchanged as throughput is scaled. Our chips are fabricated out of silicon and glass substrates, which have excellent solvent compatibility, compatibility with pharmaceutical manufacturing, and can be fully reset and reused. SARS-CoV-2 mRNA-LNP vaccines formulated by our chips triggered potent antibody responses in a preclinical study. These results demonstrate the feasibility of directly translating microfluidic-generated LNPs to the scale necessary for commercial production.


Assuntos
COVID-19 , Nanopartículas , Humanos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Lipossomos , RNA Mensageiro/genética
2.
Small ; : e2402292, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864236

RESUMO

Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.

3.
Eur Phys J E Soft Matter ; 47(6): 37, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829453

RESUMO

In this study, we demonstrate the fabrication of polymersomes, protein-blended polymersomes, and polymeric microcapsules using droplet microfluidics. Polymersomes with uniform, single bilayers and controlled diameters are assembled from water-in-oil-in-water double-emulsion droplets. This technique relies on adjusting the interfacial energies of the droplet to completely separate the polymer-stabilized inner core from the oil shell. Protein-blended polymersomes are prepared by dissolving protein in the inner and outer phases of polymer-stabilized droplets. Cell-sized polymeric microcapsules are assembled by size reduction in the inner core through osmosis followed by evaporation of the middle phase. All methods are developed and validated using the same glass-capillary microfluidic apparatus. This integrative approach not only demonstrates the versatility of our setup, but also holds significant promise for standardizing and customizing the production of polymer-based artificial cells.


Assuntos
Células Artificiais , Polímeros , Células Artificiais/química , Polímeros/química , Polímeros/síntese química , Emulsões/química , Cápsulas/química , Microfluídica/métodos , Água/química , Técnicas Analíticas Microfluídicas , Proteínas/química
4.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38421070

RESUMO

Understanding the dynamics of polymers in confined environments is pivotal for diverse applications ranging from polymer upcycling to bioseparations. In this study, we develop an entropic barrier model using self-consistent field theory that considers the effect of attractive surface interactions, solvation, and confinement on polymer kinetics. In this model, we consider the translocation of a polymer from one cavity into a second cavity through a single-segment-width nanopore. We find that, for a polymer in a good solvent (i.e., excluded volume, u0 > 0), there is a nonmonotonic dependence of mean translocation time (τ) on surface interaction strength, ɛ. At low ɛ, excluded volume interactions lead to an energetic penalty and longer translocation times. As ɛ increases, the surface interactions counteract the energetic penalty imposed by excluded volume and the polymer translocates faster through the nanopore. However, as ɛ continues to increase, an adsorption transition occurs, which leads to significantly slower kinetics due to the penalty of desorption from the first cavity. The ɛ at which this adsorption transition occurs is a function of the excluded volume, with higher u0 leading to an adsorption transition at higher ɛ. Finally, we consider the effect of translocation across different size cavities. We find that the kinetics for translocation into a smaller cavity speeds up while translocation to a larger cavity slows down with increasing ɛ due to higher surface contact under stronger confinement.

5.
J Chem Phys ; 160(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214386

RESUMO

Understanding polymer transport in nanopores is crucial for optimizing heterogeneously catalyzed processes in polymer upcycling and fabricating high-performance nanocomposite films and membranes. Although confined polymer dynamics have been extensively studied, the behavior of polyethylene (PE)-the most widely used commodity polymer-in pores smaller than 20 nm remains largely unexplored. We investigate the effects of extreme nanoconfinement on PE transport using capillary rise infiltration in silica nanoparticle packings with average pore radii ranging from ∼1 to ∼9 nm. Using in situ ellipsometry and the Lucas-Washburn model, we discover a previously unknown inverse relationship between effective viscosity (ηeff) and average pore radius (Rpore). Additonally, we determine that PE transport under these extreme conditions is primarily governed by physical confinement, rather than pore surface chemistry. We refine an existing theory to provide a generalized formalism to describe the polymer transport dynamics over a wide range of pore radii (from 1 nm and larger). Our results offer valuable insights for optimizing catalyst supports in polymer upcycling and improving infiltration processes for nanocomposite fabrication.

6.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38270239

RESUMO

Polymer infiltrated nanoporous gold is prepared by infiltrating polymer melts into a bicontinuous, nanoporous gold (NPG) scaffold. Polystyrene (PS) films with molecular weights (Mw) from 424 to 1133 kDa are infiltrated into a NPG scaffold (∼120 nm), with a pore radius (Rp) and pore volume fraction of 37.5 nm and 50%, respectively. The confinement ratios (Γ=RgRp) range from 0.47 to 0.77, suggesting that the polymers inside the pores are moderately confined. The time for PS to achieve 80% infiltration (τ80%) is determined using in situ spectroscopic ellipsometry at 150 °C. The kinetics of infiltration scales weaker with Mw, τ80%∝Mw1.30±0.20, than expected from bulk viscosity Mw3.4. Furthermore, the effective viscosity of the PS melt inside NPG, inferred from the Lucas-Washburn model, is reduced by more than one order of magnitude compared to the bulk. Molecular dynamics simulation results are in good agreement with experiments predicting scaling as Mw1.4. The reduced dependence of Mw and the enhanced kinetics of infiltration are attributed to a reduction in chain entanglement density during infiltration and a reduction in polymer-wall friction with increasing polymer molecular weight. Compared to the traditional approach involving adding discrete particles into the polymer matrix, these studies show that nanocomposites with higher loading can be readily prepared, and that kinetics of infiltration are faster due to polymer confinement inside pores. These films have potential as actuators when filled with stimuli-responsive polymers as well as polymer electrolyte and fuel cell membranes.

7.
Rep Prog Phys ; 86(6)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-36990071

RESUMO

Slippery liquid-infused porous surfaces (SLIPS) show remarkable liquid repellency, making them useful for many coating applications. The outstanding repellency of SLIPS comes from a lubricant layer stabilized within and at the surface of a porous template. The stability of this lubricant layer is key for SLIPS to exhibit their unique functionality. The lubricant layer, however, is depleted over time, causing degradation of liquid repellency. The formation of wetting ridges surrounding liquid droplets on the surface of SLIPS is one of the primary sources of lubricant depletion. Here, we present the fundamental understanding and characteristics of wetting ridges and highlight the latest developments that enable the detailed investigation and suppression of wetting ridge formation on SLIPS. In addition, we offer our perspectives on new and exciting directions for SLIPS.

8.
Small ; 19(39): e2302676, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37263985

RESUMO

Polymer nanocomposites with high loadings of nanoparticles (NPs) exhibit exceptional mechanical and transport properties. Separation of polymers and NPs from such nanocomposites is a critical step in enabling the recycling of these components and reducing the potential environmental hazards that can be caused by the accumulation of nanocomposite wastes in landfills. However, the separation typically requires the use of organic solvents or energy-intensive processes. Using polydimethylsiloxane (PDMS)-infiltrated SiO2 NP films, we demonstrate that the polymers can be separated from the SiO2 NP packings when these nanocomposites are exposed to high humidity and water. The findings indicate that the charge state of the NPs plays a significant role in the propensity of water to undergo capillary condensation within the PDMS-filled interstitial pores. We also show that the size of NPs has a crucial impact on the kinetics and extent of PDMS expulsion, illustrating the importance of capillary forces in inducing PDMS expulsion. We demonstrate that the separated polymer can be collected and reused to produce a new nanocomposite film. The work provides insightful guidelines on how to design and fabricate end-of-life recyclable high-performance nanocomposites.

9.
Small ; 19(36): e2300361, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37140078

RESUMO

Colloidal colorimetric microsensors enable the in-situ detection of mechanical strains within materials. Enhancing the sensitivity of these sensors to small scale deformation while enabling reversibility of the sensing capability would expand their utility in applications including biosensing and chemical sensing. In this study, we introduce the synthesis of colloidal colorimetric nano-sensors using a simple and readily scalable fabrication method. Colloidal nano sensors are prepared by emulsion-templated assembly of polymer-grafted gold nanoparticles (AuNP). To direct the adsorption of AuNP to the oil-water interface of emulsion droplets, AuNP (≈11nm) are functionalized with thiol-terminated polystyrene (PS, Mn  = 11k). These PS-grafted gold nanoparticles are suspended in toluene and subsequently emulsified to form droplets with a diameter of ≈30µm. By evaporating the solvent of the oil-inwater emulsion, we form nanocapsules (AuNC) (diameter < 1µm) decorated by PS-grafted AuNP. To test mechanical sensing, the AuNC are embedded in an elastomer matrix. The addition of a plasticizer reduces the glass transition temperature of the PS brushes, and in turn imparts reversible deformability to the AuNC. The plasmonic peak of the AuNC shifts towards lower wavelengths upon application of uniaxial tensile tension, indicating increased inter-nanoparticle distance, and reverts back as the tension is released.

10.
Langmuir ; 39(15): 5477-5485, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37015180

RESUMO

Flow-based nanoprecipitation of different solutes via rapid mixing of two miscible liquids is a scalable strategy for manufacturing nanoparticles with various shapes and morphologies. Controlling the size of nanoparticles in flow-based nanoprecipitation, however, is often left to empirical variations in the flow rate ratios or the total flow rate of the two streams. In this work, we investigate the coprecipitations of oil and polymer to form nanocapsules via the Ouzo effect using glass capillary microfluidics across a range of mixing conditions. In the range of flow rates studied, the two streams mix convectively in micro-vortices formed at the junction of the two stream inlets. Using computational fluid dynamics simulations and glass capillary microfluidic nanoprecipitation, we establish a relationship between the precipitation conditions occurring experimentally in situ and the location on the ternary Ouzo phase diagram where precipitation is taking place. We find that a key variable in the resulting average diameter of the fabricated capsules is the degree of supersaturation experienced by both the oil and the polymer in the vortex zone of the device, showing a strong correlation between the two values. The control over the nanocapsule size by varying the extent of supersaturation of both precipitants is demonstrated by using two oils having distinct phase diagrams. This work provides a systematic approach to controlling the size of nanoparticles fabricated via continuous nanoprecipitation by linking the in situ flow conditions to ternary phase diagram behavior, enabling accurate control over nanocapsule size.

11.
Langmuir ; 39(5): 1740-1749, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36637895

RESUMO

Polymer adsorption at the solid/liquid interface depends not only on the chemical composition of the polymer but also on the specific placement of the monomers along the polymer sequence. However, challenges in designing polymers with well-controlled sequences have limited explorations into the role of polymer sequence on adsorption behavior to molecular simulations. Here, we demonstrate how the sequence control offered by polypeptide synthesis can be utilized to study the effects small changes in polymer sequence have on polymer adsorption behavior at the solid/liquid interface. Through a combination of quartz crystal microbalance with dissipation monitoring and total internal reflection ellipsometry, we study the adsorption behavior of three polypeptides, consisting of 90% lysine and 10% cysteine, onto a gold surface. We find different mechanisms are responsible for the adsorption of polypeptides and the resulting conformation on the surface. The initial adsorption of the polypeptides is driven by electrostatic interactions between the polylysine and the gold surface. Once adsorbed, the cysteine undergoes a thiol-Au reaction with the surface, altering the conformation of the polymer layer. Our findings suggest the conformation of the polypeptide layer is dependent on the placement of the cysteines within the sequence; polypeptide chains with evenly spaced cysteine groups adopt a more tightly bound "train" conformation as compared to polypeptides with closely grouped cysteine groups. We envision that the methodologies presented here to study sequence specific adsorption behaviors using polypeptides could be a valuable tool to complement molecular simulations studies.


Assuntos
Cisteína , Polímeros , Adsorção , Polímeros/química , Peptídeos , Ouro/química , Propriedades de Superfície , Técnicas de Microbalança de Cristal de Quartzo
12.
Soft Matter ; 18(47): 9045-9056, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416054

RESUMO

The effect of nanoscale defects on nanoparticle dynamics in defective tetra-poly(ethylene glycol) (tetra-PEG) hydrogels is investigated using single particle tracking. In a swollen nearly homogeneous hydrogel, PEG-functionalized quantum dot (QD) probes with a similar hydrodynamic diameter (dh = 15.1 nm) to the mesh size (〈ξs〉 = 16.3 nm), are primarily immobile. As defects are introduced to the network by reaction-tuning, both the percentage of mobile QDs and the size of displacements increase as the number and size of the defects increase with hydrolysis time, although a large portion of the QDs remain immobile. To probe the effect of nanoparticle size on dynamics in defective networks, the transport of dh = 47.1 nm fluorescent polystyrene (PS) and dh = 9.6 nm PEG-functionalized QDs is investigated. The PS nanoparticles are immobile in all hydrogels, even in highly defective networks with an open structure. Conversely, the smaller QDs are more sensitive to perturbations in the network structure with an increased percentage of mobile particles and larger diffusion coefficients compared to the larger QDs and PS nanoparticles. The differences in nanoparticle mobility as a function of size suggests that particles of different sizes probe different length scales of the defects, indicating that metrics such as the confinement ratio alone cannot predict bulk dynamics in these systems. This study provides insight into designing hydrogels with controlled transport properties, with particular importance for degradable hydrogels for drug delivery applications.


Assuntos
Hidrogéis
13.
Soft Matter ; 18(35): 6618-6628, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36000279

RESUMO

The ubiquitous nature of microorganisms, especially of biofilm-forming bacteria, makes biofouling a prevalent challenge in many settings, including medical and industrial environments immersed in liquid and subjected to shear forces. Recent studies have shown that zwitterionic groups are effective in suppressing bacteria and protein adhesion as well as biofilm growth. However, the effect of zwitterionic groups on the removal of surface-bound bacteria has not been extensively studied. Here we present a microfluidic approach to evaluate the effectiveness in facilitating bacteria detachment by shear of an antifouling surface treatment using (3-(dimethyl;(3-trimethoxysilyl)propyl)ammonia propane-1-sulfonate), a sulfobetaine silane (SBS). Control studies show that SBS-functionalized surfaces greatly increase protein (bovine serum albumin) removal upon rinsing. On the same surfaces, enhanced bacteria (Pseudomonas aeruginosa) removal is observed under shear. To quantify this enhancement a microfluidic shear device is employed to investigate how SBS-functionalized surfaces promote bacteria detachment under shear. By using a microfluidic channel with five shear zones, we compare the removal of bacteria from zwitterionic and glass surfaces under different shear rates. At times of 15 min, 30 min, and 60 min, bacteria adhesion on SBS-functionalized surfaces is reduced relative to the control surface (glass) under quiescent conditions. However, surface-associated bacteria on the SBS-functionalized glass and control show similar percentages of live cells, suggesting minimal intrinsic biocidal effect from the SBS-functionalized surface. Notably, when exposed to shear rates ranging from 104 to 105 s-1, significantly fewer bacteria remain on the SBS-functionalized surfaces. These results demonstrate the potential of zwitterionic sulfobetaine as effective antifouling coatings that facilitate the removal of bacteria under shear.


Assuntos
Aderência Bacteriana , Incrustação Biológica , Bactérias , Betaína/análogos & derivados , Betaína/química , Betaína/farmacologia , Incrustação Biológica/prevenção & controle , Propriedades de Superfície
14.
Nano Lett ; 21(19): 7989-7997, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34569799

RESUMO

Recent studies have demonstrated that amorphous materials, from granular packings to atomic glasses, share multiple striking similarities, including a universal onset strain level for yield. This is despite vast differences in length scales and in the constituent particles' interactions. However, the nature of localized particle rearrangements is not well understood, and how local interactions affect overall performance remains unknown. Here, we introduce a multiscale adhesive discrete element method to simulate recent novel experiments of disordered nanoparticle packings indented and imaged with single nanoparticle resolution. The simulations exhibit multiple behaviors matching the experiments. By directly monitoring spatial rearrangements and interparticle bonding/debonding under the packing's surface, we uncover the mechanisms of the yielding and hardening phenomena observed in experiments. Interparticle friction and adhesion synergistically toughen the packings and retard plastic deformation. Moreover, plasticity can result from bond switching without particle rearrangements. These results furnish insights for understanding yielding in amorphous materials generally.


Assuntos
Adesivos , Nanopartículas , Fricção
15.
Anal Chem ; 93(21): 7635-7646, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34014074

RESUMO

Multiplex separation of mixed biological samples is essential in a considerable portion of biomedical research and clinical applications. An automated and operator-independent process for the separation of samples is highly sought after. There is a significant unmet need for methods that can perform fractionation of small volumes of multicomponent mixtures. Herein, we design an integrated chip that combines acoustic and electric fields to enable efficient and label-free separation of multiple different cells and particles under flow. To facilitate the connection of multiple sorting mechanisms in tandem, we investigate the electroosmosis (EO)-induced deterministic lateral displacement (DLD) separation in a combined pressure- and DC field-driven flow and exploit the combination of the bipolar electrode (BPE) focusing and surface acoustic wave (SAW) sorting modules. We successfully integrate four sequential microfluidic modules for multitarget separation within a single platform: (i) sorting particles and cells relying on the size and surface charge by adjusting the flow rate and electric field using a DLD array; (ii) alignment of cells or particles within a microfluidic channel by a bipolar electrode; (iii) separation of particles based on compressibility and density by the acoustic force; and (iv) separation of viable and nonviable cells using dielectric properties via the dielectrophoresis (DEP) force. As a proof of principle, we demonstrate the sorting of multiple cell and particle types (polystyrene (PS) particles, oil droplets, and viable and nonviable yeast cells) with high efficiency. This integrated microfluidic platform combines multiple functional components and, with its ability to noninvasively sort multiple targeted cells in a label-free manner relying on different properties, is compatible with high-definition imaging, showing great potential in diverse diagnostic and analysis applications.


Assuntos
Hidrodinâmica , Técnicas Analíticas Microfluídicas , Acústica , Separação Celular , Eletroforese , Microfluídica , Som
17.
Langmuir ; 37(49): 14520-14526, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34865477

RESUMO

Understanding and modulating the interactions between molten polymers and porous solids is important for numerous processes and phenomena including catalytic conversion of polymers and fabrication of nanocomposites and nanostructured materials. Although changing the surface composition of pores would enable modulation of interactions between polymers and nanoporous solids, it is challenging to achieve such a control without inducing significant changes to the size and structure of nanopores. In this work, we demonstrate that the interactions between molten polystyrene (PS) and disordered packings of SiO2 nanoparticles (NPs) can be modulated by changing the surface composition of the NPs using atomic layer deposition (ALD). A disordered packing of silica NPs is modified with varying surface coverages of TiO2, WO3, and CaCO3, with coverages estimated by the mass gain and the refractive index change of NP packings. Based on the time required to fully infiltrate these ALD-modified NP packings via capillarity, the contact angles for PS on different surfaces prepared via ALD are determined. The contact angle gradually changes from that of pure SiO2 to that of the fully covered surfaces. The contact angles for PS on SiO2, TiO2, WO3, and CaCO3 are found to be 20, 62, 70, and 10°, respectively. Interestingly, the contact angles and interfacial energies between PS and the ALD-modified surfaces do not correlate strongly with the water contact angle of these surfaces; thus, caution must be exercised in predicting how a polymer would wet or interact with porous solids solely based on their hydrophilicity. The method presented in this work can be extended to study the interactions between a wide range of polymers and surfaces in porous media, which will have important implications for designing new catalytic materials for polymer upcycling reactions and novel NP-polymer composite films and membranes with enhanced mechanical and transport properties.

18.
Soft Matter ; 17(10): 2765-2774, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33538749

RESUMO

The effect of static silica particles on the dynamics of quantum dot (QD) nanoparticles grafted with a poly(ethylene glycol) (PEG) brush in hydrogel nanocomposites is investigated using single particle tracking (SPT). At a low volume fraction of homogeneously dispersed silica (Φ = 0.005), two distinct populations of PEG-QDs are observed, localized and mobile, whereas almost all PEG-QDs are mobile in neat hydrogel (Φ = 0.0). Increasing the silica particle concentration (Φ = 0.01, 0.1) results in an apparent change in the network structure, confounding the impact of silica on PEG-QD dynamics. The localized behavior of PEG-QDs is attributed to pH-mediated attraction between the PEG brush on the probe and surface silanol groups of silica. Using quartz crystal microbalance with dissipation (QCM-D), the extent of this interaction is investigated as a function of pH. At pH 5.8, the PEG brush on the probe can hydrogen bond with the silanol groups on silica, leading to adsorption of PEG-QDs. In contrast, at pH 9.2, silanol groups are deprotonated and PEG-QD is unable to hydrogen bond with silica leading to negligible adsorption. To test the effect of pH, PEG-QD dynamics are further investigated in hydrogel nanocomposites at Φ = 0.005. SPT agrees with the QCM-D results; at pH 5.8, PEG-QDs are localized whereas at pH 9.2 the PEG-QDs are mobile. This study provides insight into controlling probe transport through hydrogel nanocomposites using pH-mediated interactions, with implications for tuning transport of nanoparticles underlying drug delivery and nanofiltration.

19.
Proc Natl Acad Sci U S A ; 115(16): 4170-4175, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610310

RESUMO

The succession from aerobic and facultative anaerobic bacteria to obligate anaerobes in the infant gut along with the differences between the compositions of the mucosally adherent vs. luminal microbiota suggests that the gut microbes consume oxygen, which diffuses into the lumen from the intestinal tissue, maintaining the lumen in a deeply anaerobic state. Remarkably, measurements of luminal oxygen levels show nearly identical pO2 (partial pressure of oxygen) profiles in conventional and germ-free mice, pointing to the existence of oxygen consumption mechanisms other than microbial respiration. In vitro experiments confirmed that the luminal contents of germ-free mice are able to chemically consume oxygen (e.g., via lipid oxidation reactions), although at rates significantly lower than those observed in the case of conventionally housed mice. For conventional mice, we also show that the taxonomic composition of the gut microbiota adherent to the gut mucosa and in the lumen throughout the length of the gut correlates with oxygen levels. At the same time, an increase in the biomass of the gut microbiota provides an explanation for the reduction of luminal oxygen in the distal vs. proximal gut. These results demonstrate how oxygen from the mammalian host is used by the gut microbiota, while both the microbes and the oxidative chemical reactions regulate luminal oxygen levels, shaping the composition of the microbial community throughout different regions of the gut.


Assuntos
Anaerobiose , Bactérias Anaeróbias/metabolismo , Microbioma Gastrointestinal , Mucosa Intestinal/metabolismo , Oxigênio/metabolismo , Animais , Bactérias Anaeróbias/isolamento & purificação , Sistemas Computacionais , Mucosa Gástrica/metabolismo , Conteúdo Gastrointestinal/química , Vida Livre de Germes , Lipídeos/química , Medições Luminescentes , Metaloporfirinas/análise , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Oxigênio/análise , Consumo de Oxigênio , Proteínas/química
20.
Small ; 16(9): e1903736, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31559690

RESUMO

Biopolymers are macromolecules that are derived from natural sources and have attractive properties for a plethora of biomedical applications due to their biocompatibility, biodegradability, low antigenicity, and high bioactivity. Microfluidics has emerged as a powerful approach for fabricating polymeric microparticles (MPs) with designed structures and compositions through precise manipulation of multiphasic flows at the microscale. The synergistic combination of materials chemistry afforded by biopolymers and precision provided by microfluidic capabilities make it possible to design engineered biopolymer-based MPs with well-defined physicochemical properties that are capable of enabling an efficient delivery of therapeutics, 3D culture of cells, and sensing of biomolecules. Here, an overview of microfluidic approaches is provided for the design and fabrication of functional MPs from three classes of biopolymers including polysaccharides, proteins, and microbial polymers, and their advances for biomedical applications are highlighted. An outlook into the future research on microfluidically-produced biopolymer MPs for biomedical applications is also provided.


Assuntos
Tecnologia Biomédica , Biopolímeros , Microfluídica , Tecnologia Biomédica/tendências , Biopolímeros/química , Terapêutica/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA