Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(27): 7111-7116, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915039

RESUMO

Mutations in the human LARGE gene result in severe intellectual disability and muscular dystrophy. How LARGE mutation leads to intellectual disability, however, is unclear. In our proteomic study, LARGE was found to be a component of the AMPA-type glutamate receptor (AMPA-R) protein complex, a main player for learning and memory in the brain. Here, our functional study of LARGE showed that LARGE at the Golgi apparatus (Golgi) negatively controlled AMPA-R trafficking from the Golgi to the plasma membrane, leading to down-regulated surface and synaptic AMPA-R targeting. In LARGE knockdown mice, long-term potentiation (LTP) was occluded by synaptic AMPA-R overloading, resulting in impaired contextual fear memory. These findings indicate that the fine-tuning of AMPA-R trafficking by LARGE at the Golgi is critical for hippocampus-dependent memory in the brain. Our study thus provides insights into the pathophysiology underlying cognitive deficits in brain disorders associated with intellectual disability.


Assuntos
Hipocampo/metabolismo , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Receptores de AMPA/metabolismo , Animais , Hipocampo/citologia , Humanos , Camundongos , N-Acetilglucosaminiltransferases/genética , Transporte Proteico/fisiologia , Receptores de AMPA/genética
2.
J Biol Chem ; 287(34): 28632-45, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753414

RESUMO

The AMPA receptor (AMPA-R) is a major excitatory neurotransmitter receptor in the brain. Identifying and characterizing the neuronal proteins interacting with AMPA-Rs have provided important information about the molecular mechanisms underlying synaptic transmission and plasticity. In this study, to identify more AMPA-R interactors in vivo, we performed proteomic analyses of AMPA-R complexes from the brain. AMPA-R complexes were isolated from the brain through various combinations of biochemical techniques for solubilization, enrichment, and immunoprecipitation. Mass spectrometry analyses of these isolated complexes identified several novel components of the AMPA-R complexes as well as some previously identified components. The identification of these novel components helps to further define the complex mechanisms involved in the regulation of AMPA receptor function and synaptic plasticity.


Assuntos
Complexos Multiproteicos/metabolismo , Proteômica , Receptores de AMPA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Ratos
3.
Pain ; 153(9): 1905-1915, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22770842

RESUMO

Sensitization of dorsal horn neurons (DHNs) in the spinal cord is dependent on pain-related synaptic plasticity and causes persistent pain. The DHN sensitization is mediated by a signal transduction pathway initiated by the activation of N-methyl-d-aspartate receptors (NMDA-Rs). Recent studies have shown that elevated levels of reactive oxygen species (ROS) and phosphorylation-dependent trafficking of GluA2 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) are a part of the signaling pathway for DHN sensitization. However, the relationship between ROS and AMPA-R phosphorylation and trafficking is not known. Thus, this study investigated the effects of ROS scavengers on the phosphorylation and cell-surface localization of GluA1 and GluA2. Intrathecal NMDA- and intradermal capsaicin-induced hyperalgesic mice were used for this study since both pain models share the NMDA-R activation-dependent DHN sensitization in the spinal cord. Our behavioral, biochemical, and immunohistochemical analyses demonstrated that: 1) NMDA-R activation in vivo increased the phosphorylation of AMPA-Rs at GluA1 (S818, S831, and S845) and GluA2 (S880) subunits; 2) NMDA-R activation in vivo increased cell-surface localization of GluA1 but decreased that of GluA2; and 3) reduction of ROS levels by ROS scavengers PBN (N-tert-butyl-α-phenylnitrone) or TEMPOL (4-hydroxy-2, 2, 6, 6-tetramethylpiperidin-1-oxyl) reversed these changes in AMPA-Rs, as well as pain-related behavior. Given that AMPA-R trafficking to the cell surface and synapse is regulated by NMDA-R activation-dependent phosphorylation of GluA1 and GluA2, our study suggests that the ROS-dependent changes in the phosphorylation and cell-surface localization of AMPA-Rs are necessary for DHN sensitization and thus, pain-related behavior. We further suggest that ROS reduction will ameliorate these molecular changes and pain.


Assuntos
Sensibilização do Sistema Nervoso Central/fisiologia , Dor Crônica/metabolismo , Células do Corno Posterior/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de AMPA/metabolismo , Animais , Sensibilização do Sistema Nervoso Central/efeitos dos fármacos , Óxidos N-Cíclicos , Sequestradores de Radicais Livres , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Células do Corno Posterior/efeitos dos fármacos , Receptores de AMPA/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA