RESUMO
BACKGROUND AND OBJECTIVES: Optical coherence tomography (OCT) is a cross-sectional imaging method utilizing a low coherence interferometry. The lateral resolution of the OCT is limited by the numerical aperture (NA) of the imaging lens. Using a high NA lens improves the lateral resolution but reduces the depth of focus (DOF). In this study, we propose a method to improve the lateral resolution of OCT images by end-to-end training of a deep 1-D deconvolution network without use of high-resolution images. MATERIALS AND METHODS: To improve the lateral resolution of the OCT, we trained the 1-D deconvolution network using lateral profiles of OCT images and the beam spot size. We used our image-guided laparoscopic surgical tool (IGLaST) to acquire OCT images of nonbiological and biological samples ex vivo. The OCT images were then blurred by applying Gaussian functions with various full width half maximums ranging from 40 to 160 µm. The network was trained using the blurred OCT images as input and the non-blurred original OCT images as output. We quantitatively evaluated the developed network in terms of similarity and signal-to-ratio (SNR), using in-vivo images of mesenteric tissue from a porcine model that was not used for training. In addition, we performed knife-edge tests and qualitative evaluation of the network to show the lateral resolution improvement of ex-vivo and in-vivo OCT images. RESULTS: The proposed method showed an improvement of image quality on both blurred images and non-blurred images. When the proposed deconvolution network was applied, the similarity to the non-blurred image was improved by 1.29 times, and the SNR was improved by 1.76 dB compared to the artificially blurred images, which was superior to the conventional deconvolution method. The knife-edge tests at distances at 200 to 1000 µm from the imaging probe showed an approximately 1.2 times improvement in lateral resolution. In addition, through qualitative evaluation, it was found that the image quality of both ex-vivo and in-vivo tissue images was improved with clear structure and less noise. CONCLUSIONS: This study showed the ability of the 1-D deconvolution network to improve the image quality of OCT images with variable lateral resolution. We were able to train the network with a small amount of data by constraining the network in 1-D. The quantitative evaluation showed better results than conventional deconvolution methods for various amount of blurring. Qualitative evaluation showed analogous results with quantitative results. This simple yet powerful image restoration method provides improved lateral resolution and suppresses background noise, making it applicable to a variety of OCT imaging applications.
Assuntos
Processamento de Imagem Assistida por Computador , Tomografia de Coerência Óptica , Animais , Suínos , Tomografia de Coerência Óptica/métodosRESUMO
We report that the shape and size of fluorescent patterns can be controlled by the focused laser intensity distribution, which depends on irradiation conditions as well as on the spin and orbital angular momenta being carried by light, inducing the formation of silver cluster patterns in a silver-containing zinc phosphate glass. In particular, we demonstrate that sub-diffraction-limited inner structures of fluorescent patterns can be generated by direct laser writing (DLW) with tightly focused femtosecond laser vortex beams as Laguerre-Gauss modes (LG0l) with linear and left-handed circular polarizations. We believe this technique, further combined with dual-color DLW, can be useful and powerful for developing structured light enabled nanostructures.
RESUMO
Electrical stimulation through direct electrical activation has been widely used to recover the function of neurons, primarily through the extracellular application of thin film electrodes. However, studies using extracellular methods show limited ability to reveal correlations between the cells and the electrical stimulation due to interference from external sources such as membrane capacitance and culture medium. Here, we demonstrate long-term intracellular electrical stimulation of undamaged pheochromocytoma (PC-12) cells by utilizing a vertical nanowire electrode array (VNEA). The VNEA was prepared by synthesizing silicon nanowires on a Si substrate through a vapor-liquid-solid (VLS) mechanism and then fabricating them into electrodes with semiconductor nanodevice processing. PC-12 cells were cultured on the VNEA for 4 days with intracellular electrical stimulation and then a 2-day stabilization period. Periodic scanning via two-photon microscopy confirmed that the electrodes pierced the cells without inducing damage. Electrical stimulation through the VNEA enhances cellular differentiation and neurite outgrowth by about 50% relative to extracellular stimulation under the same conditions. VNEA-mediated stimulation also revealed that cellular differentiation and growth in the cultures were dependent on the potential used to stimulate them. Intracellular stimulation using nanowires could pave the way for controlled cellular differentiation and outgrowth studies in living cells.
RESUMO
Laparoscopic surgery presents challenges in identifying blood vessels due to lack of tactile feedback. The image-guided laparoscopic surgical tool (IGLaST) integrated with optical coherence tomography (OCT) has potential for in vivo blood vessel imaging; however, distinguishing vessels from surrounding tissue remains a challenge. In this study, we propose utilizing an inter-A-line intensity differentiation-based OCT angiography (OCTA) to improve visualization of blood vessels. By evaluating a tissue phantom with varying flow speeds, we optimized the system's blood flow imaging capabilities in terms of minimum detectable flow and contrast-to-noise ratio. In vivo experiments on rat and porcine models, successfully visualized previously unidentified blood vessels and concealed blood flows beneath the 1 mm depth peritoneum. Qualitative comparison of various OCTA algorithms indicated that the intensity differentiation-based algorithm performed best for our application. We believe that implementing IGLaST with OCTA can enhance surgical outcomes and reduce procedure time in laparoscopic surgeries.