Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 596(7871): 285-290, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34321666

RESUMO

Ageing is driven by a loss of cellular integrity1. Given the major role of ubiquitin modifications in cell function2, here we assess the link between ubiquitination and ageing by quantifying whole-proteome ubiquitin signatures in Caenorhabditis elegans. We find a remodelling of the ubiquitinated proteome during ageing, which is ameliorated by longevity paradigms such as dietary restriction and reduced insulin signalling. Notably, ageing causes a global loss of ubiquitination that is triggered by increased deubiquitinase activity. Because ubiquitination can tag proteins for recognition by the proteasome3, a fundamental question is whether deficits in targeted degradation influence longevity. By integrating data from worms with a defective proteasome, we identify proteasomal targets that accumulate with age owing to decreased ubiquitination and subsequent degradation. Lowering the levels of age-dysregulated proteasome targets prolongs longevity, whereas preventing their degradation shortens lifespan. Among the proteasomal targets, we find the IFB-2 intermediate filament4 and the EPS-8 modulator of RAC signalling5. While increased levels of IFB-2 promote the loss of intestinal integrity and bacterial colonization, upregulation of EPS-8 hyperactivates RAC in muscle and neurons, and leads to alterations in the actin cytoskeleton and protein kinase JNK. In summary, age-related changes in targeted degradation of structural and regulatory proteins across tissues determine longevity.


Assuntos
Envelhecimento/metabolismo , Caenorhabditis elegans/metabolismo , Proteoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Citoesqueleto de Actina/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas do Citoesqueleto/metabolismo , Intestinos/microbiologia , Longevidade , Músculos/metabolismo , Neurônios/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteoma/química , Proteínas rac de Ligação ao GTP/metabolismo
2.
Hum Mol Genet ; 32(10): 1607-1621, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36611004

RESUMO

Stress granules are membrane-less ribonucleoprotein organelles that assemble upon exposure to stress conditions, but rapidly disassemble upon removal of stress. However, chronic stress can lead to persistent stress granules, a feature of distinct age-related neurodegenerative disorders. Among them, Huntington's disease (HD), which is caused by mutant expansion of the polyglutamine (polyQ) repeats of huntingtin protein (HTT), leading to its aggregation. To identify modulators of mutant HTT aggregation, we define its interactome in striatal neurons differentiated from patient-derived induced pluripotent stem cells (HD-iPSCs). We find that HTT interacts with G3BP1, a characteristic component of stress granules. Knockdown of G3BP1 increases mutant HTT protein levels and abolishes the ability of iPSCs as well as their differentiated neural counterparts to suppress mutant HTT aggregation. Moreover, loss of G3BP1 hastens polyQ-expanded aggregation and toxicity in the neurons of HD C. elegans models. Likewise, the assembly of G3BP1 into stress granules upon distinct stress conditions also reduces its interaction with HTT in human cells, promoting mutant HTT aggregation. Notably, enhancing the levels of G3BP1 is sufficient to induce proteasomal degradation of mutant HTT and prevent its aggregation, whereas the formation of stress granules blocks these ameliorative effects. In contrast, a mutant G3BP1 variant that cannot accumulate into granules retains its capacity to prevent mutant HTT aggregation even when the cells assemble stress granules. Thus, our findings indicate a direct role of G3BP1 and stress granule assembly in mutant HTT aggregation that may have implications for HD.


Assuntos
Doença de Huntington , Agregados Proteicos , Animais , Humanos , DNA Helicases/metabolismo , Grânulos de Estresse , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Mutação
4.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37885155

RESUMO

Normal cortical growth and the resulting folding patterns are crucial for normal brain function. Although cortical development is largely influenced by genetic factors, environmental factors in fetal life can modify the gene expression associated with brain development. As the placenta plays a vital role in shaping the fetal environment, affecting fetal growth through the exchange of oxygen and nutrients, placental oxygen transport might be one of the environmental factors that also affect early human cortical growth. In this study, we aimed to assess the placental oxygen transport during maternal hyperoxia and its impact on fetal brain development using MRI in identical twins to control for genetic and maternal factors. We enrolled 9 pregnant subjects with monochorionic diamniotic twins (30.03 ± 2.39 gestational weeks [mean ± SD]). We observed that the fetuses with slower placental oxygen delivery had reduced volumetric and surface growth of the cerebral cortex. Moreover, when the difference between placenta oxygen delivery increased between the twin pairs, sulcal folding patterns were more divergent. Thus, there is a significant relationship between placental oxygen transport and fetal brain cortical growth and folding in monochorionic twins.


Assuntos
Placenta , Gêmeos Monozigóticos , Feminino , Humanos , Gravidez , Desenvolvimento Fetal , Retardo do Crescimento Fetal/metabolismo , Oxigênio/metabolismo , Placenta/diagnóstico por imagem , Placenta/metabolismo
5.
Mol Ther ; 32(6): 1970-1983, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627968

RESUMO

Mesenchymal stem/stromal cells (MSCs) modulate the immune response through interactions with innate immune cells. We previously demonstrated that MSCs alleviate ocular autoimmune inflammation by directing bone marrow cell differentiation from pro-inflammatory CD11bhiLy6ChiLy6Glo cells into immunosuppressive CD11bmidLy6CmidLy6Glo cells. Herein, we analyzed MSC-induced CD11bmidLy6Cmid cells using single-cell RNA sequencing and compared them with CD11bhiLy6Chi cells. Our investigation revealed seven distinct immune cell types including myeloid-derived suppressor cells (MDSCs) in the CD11bmidLy6Cmid cells, while CD11bhiLy6Chi cells included mostly monocytes/macrophages with a small cluster of neutrophils. These MSC-induced MDSCs highly expressed Retnlg, Cxcl3, Cxcl2, Mmp8, Cd14, and Csf1r as well as Arg1. Comparative analyses of CSF-1RhiCD11bmidLy6Cmid and CSF-1RloCD11bmidLy6Cmid cells demonstrated that the former had a homogeneous monocyte morphology and produced elevated levels of interleukin-10. Functionally, these CSF-1RhiCD11bmidLy6Cmid cells, compared with the CSF-1RloCD11bmidLy6Cmid cells, inhibited CD4+ T cell proliferation and promoted CD4+CD25+Foxp3+ Treg expansion in culture and in a mouse model of experimental autoimmune uveoretinitis. Resistin-like molecule (RELM)-γ encoded by Retnlg, one of the highly upregulated genes in MSC-induced MDSCs, had no direct effects on T cell proliferation, Treg expansion, or splenocyte activation. Together, our study revealed a distinct transcriptional profile of MSC-induced MDSCs and identified CSF-1R as a key cell-surface marker for detection and therapeutic enrichment of MDSCs.


Assuntos
Células-Tronco Mesenquimais , Células Supressoras Mieloides , Análise de Célula Única , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Análise de Célula Única/métodos , Transcriptoma , Diferenciação Celular/genética , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Uveíte/genética , Uveíte/imunologia , Uveíte/metabolismo , Humanos
6.
J Neuroinflammation ; 21(1): 200, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129007

RESUMO

BACKGROUND: We recently reported that the dopamine (DA) analogue CA140 modulates neuroinflammatory responses in lipopolysaccharide-injected wild-type (WT) mice and in 3-month-old 5xFAD mice, a model of Alzheimer's disease (AD). However, the effects of CA140 on Aß/tau pathology and synaptic/cognitive function and its molecular mechanisms of action are unknown. METHODS: To investigate the effects of CA140 on cognitive and synaptic function and AD pathology, 3-month-old WT mice or 8-month-old (aged) 5xFAD mice were injected with vehicle (10% DMSO) or CA140 (30 mg/kg, i.p.) daily for 10, 14, or 17 days. Behavioral tests, ELISA, electrophysiology, RNA sequencing, real-time PCR, Golgi staining, immunofluorescence staining, and western blotting were conducted. RESULTS: In aged 5xFAD mice, a model of AD pathology, CA140 treatment significantly reduced Aß/tau fibrillation, Aß plaque number, tau hyperphosphorylation, and neuroinflammation by inhibiting NLRP3 activation. In addition, CA140 treatment downregulated the expression of cxcl10, a marker of AD-associated reactive astrocytes (RAs), and c1qa, a marker of the interaction of RAs with disease-associated microglia (DAMs) in 5xFAD mice. CA140 treatment also suppressed the mRNA levels of s100ß and cxcl10, markers of AD-associated RAs, in primary astrocytes from 5xFAD mice. In primary microglial cells from 5xFAD mice, CA140 treatment increased the mRNA levels of markers of homeostatic microglia (cx3cr1 and p2ry12) and decreased the mRNA levels of a marker of proliferative region-associated microglia (gpnmb) and a marker of lipid-droplet-accumulating microglia (cln3). Importantly, CA140 treatment rescued scopolamine (SCO)-mediated deficits in long-term memory, dendritic spine number, and LTP impairment. In aged 5xFAD mice, these effects of CA140 treatment on cognitive/synaptic function and AD pathology were regulated by dopamine D1 receptor (DRD1)/Elk1 signaling. In primary hippocampal neurons and WT mice, CA140 treatment promoted long-term memory and dendritic spine formation via effects on DRD1/CaMKIIα and/or ERK signaling. CONCLUSIONS: Our results indicate that CA140 improves neuronal/synaptic/cognitive function and ameliorates Aß/tau pathology and neuroinflammation by modulating DRD1 signaling in primary hippocampal neurons, primary astrocytes/microglia, WT mice, and aged 5xFAD mice.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Camundongos Transgênicos , Doenças Neuroinflamatórias , Receptores de Dopamina D1 , Transdução de Sinais , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptores de Dopamina D1/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Cognição/efeitos dos fármacos , Dopamina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Humanos
7.
Cereb Cortex ; 33(9): 5507-5523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36408630

RESUMO

Preterm infants may exhibit altered developmental patterns of the brain structural network by endogenous and exogenous stimuli, which are quantifiable through hub and modular network topologies that develop in the third trimester. Although preterm brain networks can compensate for white matter microstructural abnormalities of core connections, less is known about how the network developmental characteristics of preterm infants differ from those of full-term infants. We identified 13 hubs and 4 modules and revealed subtle differences in edgewise connectivity and local network properties between 134 preterm and 76 full-term infants, identifying specific developmental patterns of the brain structural network in preterm infants. The modules of preterm infants showed an imbalanced composition. The edgewise connectivity in preterm infants showed significantly decreased long- and short-range connections and local network properties in the dorsal superior frontal gyrus. In contrast, the fusiform gyrus and several nonhub regions showed significantly increased wiring of short-range connections and local network properties. Our results suggested that decreased local network in the frontal lobe and excessive development in the occipital lobe may contribute to the understanding of brain developmental deviances in preterm infants.


Assuntos
Conectoma , Recém-Nascido Prematuro , Feminino , Humanos , Recém-Nascido , Conectoma/métodos , Rede Nervosa , Imageamento por Ressonância Magnética , Encéfalo
8.
Artigo em Inglês | MEDLINE | ID: mdl-38980349

RESUMO

PURPOSE: This study aimed to investigate the effects of subconjunctival injection of aflibercept, a soluble protein decoy for VEGFR-1 and VEGFR-2, on corneal angiogenesis and VEGFR-expressing CD11b+ cells in a mouse model of suture-induced corneal neovascularization. METHODS: Corneal neovascularization was induced in BALB/c mice by placing three sutures on the cornea. Immediately after surgery, either 200 µg aflibercept (5 µL) or an equal volume of phosphate-buffered saline (PBS) was administered into the subconjunctival space. Seven days after later, corneal new vessels were quantified through clinical examination and measurement of the CD31-stained area in corneal flat mounts. The levels of pro-angiogenic and inflammatory markers in the cornea were evaluated using RT-qPCR. The percentages of VEGFR-2+CD11b+ cells and VEGFR-3+CD11b+ cells were analyzed in the cornea, blood, and draining cervical lymph nodes (DLNs) using flow cytometry. RESULTS: Subconjunctival injection of aflibercept significantly reduced the growth of corneal new vessels compared to subconjunctival PBS injection. The mRNA levels of Cd31, vascular growth factors (Vegfc and Angpt1), and pro-angiogenic/inflammatory markers (Tek/Tie2, Mrc1, Mrc2, and Il6) in the cornea were downregulated by subconjunctival aflibercept. Also, the percentage of VEGFR-3+CD11b+ cells in the cornea, blood, and DLNs was decreased by aflibercept, whereas that of VEGFR-2+CD11b+ cells was unaffected. CONCLUSION: Subconjunctival aflibercept administration inhibits inflammatory angiogenesis in the cornea and reduces the numbers of cornea-infiltrating and circulating VEGFR-3+CD11b+ cells.

9.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256195

RESUMO

Our previous study demonstrated that mesenchymal stem/stromal cells (MSCs) induce the differentiation of myeloid-derived suppressor cells (MDSCs) in the bone marrow (BM) under inflammatory conditions. In this study, we aimed to investigate the signaling pathway involved. RNA-seq revealed that the mitogen-activated protein kinase (MAPK) pathway exhibited the highest number of upregulated genes in MSC-induced MDSCs. Western blot analysis confirmed the strong phosphorylation of c-Jun N-terminal kinase (JNK) in BM cells cocultured with MSCs under granulocyte-macrophage colony-stimulating factor stimulation, whereas p38 kinase activation remained unchanged in MSC-cocultured BM cells. JNK inhibition by SP600125 abolished the expression of Arg1 and Nos2, hallmark genes of MDSCs, as well as Hif1a, a molecule mediating monocyte functional reprogramming toward a suppressive phenotype, in MSC-cocultured BM cells. JNK inhibition also abrogated the effects of MSCs on the production of TGF-ß1, TGF-ß2 and IL-10 in BM cells. Furthermore, JNK inhibition increased Tnfa expression, while suppressing IL-10 production, in MSC-cocultured BM cells in response to lipopolysaccharides. Collectively, our results suggest that MSCs induce MDSC differentiation and promote immunoregulatory cytokine production in BM cells during inflammation, at least in part, through the activation of the JNK-MAPK signaling pathway.


Assuntos
Células-Tronco Mesenquimais , Células Supressoras Mieloides , Proteínas Quinases JNK Ativadas por Mitógeno , Medula Óssea , Interleucina-10 , Transdução de Sinais
10.
J Neuroinflammation ; 20(1): 27, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750851

RESUMO

BACKGROUND: Mounting evidence suggests that the immune system plays detrimental or protective roles in nerve injury and repair. MAIN BODY: Herein we report that both CD11bhiLy6Ghi and CD11bhiLy6ChiLy6Glo myeloid cells are required to protect corneal nerves against sterile corneal injury. Selective depletion of CD11bhiLy6Ghi or CD11bhiLy6ChiLy6Glo cells resulted in aggravation of corneal nerve loss, which correlated with IL-6 upregulation. IL-6 neutralization preserved corneal nerves while reducing myeloid cell recruitment. IL-6 replenishment exacerbated corneal nerve damage while recruiting more myeloid cells. In mice lacking Toll-like receptor 2 (TLR2), the levels of IL-6 and myeloid cells were decreased and corneal nerve loss attenuated, as compared to wild-type and TLR4 knockout mice. Corneal stromal fibroblasts expressed TLR2 and produced IL-6 in response to TLR2 stimulation. CONCLUSION: Collectively, our data suggest that CD11bhiLy6Ghi and CD11bhiLy6ChiLy6Glo myeloid cells confer corneal nerve protection under sterile injury by creating a negative-feedback loop to suppress the upstream TLR2-IL-6 axis that drives corneal nerve loss.


Assuntos
Interleucina-6 , Receptor 2 Toll-Like , Camundongos , Animais , Retroalimentação , Células Mieloides , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA