RESUMO
MOTIVATION: A protein can be represented in several forms, including its 1D sequence, 3D atom coordinates, and molecular surface. A protein surface contains rich structural and chemical features directly related to the protein's function such as its ability to interact with other molecules. While many methods have been developed for comparing the similarity of proteins using the sequence and structural representations, computational methods based on molecular surface representation are limited. RESULTS: Here, we describe "Surface ID," a geometric deep learning system for high-throughput surface comparison based on geometric and chemical features. Surface ID offers a novel grouping and alignment algorithm useful for clustering proteins by function, visualization, and in silico screening of potential binding partners to a target molecule. Our method demonstrates top performance in surface similarity assessment, indicating great potential for protein functional annotation, a major need in protein engineering and therapeutic design. AVAILABILITY AND IMPLEMENTATION: Source code for the Surface ID model, trained weights, and inference script are available at https://github.com/Sanofi-Public/LMR-SurfaceID.
Assuntos
Algoritmos , Software , Proteínas de MembranaRESUMO
Di-n-butyl phthalate (DBP), a well-known endocrine disruptor, causes male reproductive dysfunction. To understand the underlying mechanisms, we performed histological, endocrinological, and biochemical analyses and assessed the expression of genes involved in spermatogenesis and sperm function according to OECD test guideline 407. Following 28 days of administration of the lowest observed adverse effect level dose of DBP to mice, no significant changes in body weight, testis and epididymis weights and histology, serum testosterone level, or testicular daily sperm production were found. Nonetheless, the motility of the epididymal sperm of the DBP group was significantly decreased together with an increase in the incidence of bent tails and abnormal heads. In the testes of the DBP group, lipid peroxidation (LPO) level was significantly increased and testicular Bcl-2 mRNA level was significantly decreased together with an increase in the Bax/Bcl-2 mRNA ratio. In the testes of the DBP group, levels of Prnd mRNA and protein and Pou4f1 mRNA, an activator of the Prnd promotor, were significantly decreased. Of note, prion-like protein doppel (PRND) was significantly decreased together with decreased PRND immunoreactivity in the head, midpiece, and tail of sperm. In the testes of the DBP group, levels of Sox9, Sgp1, and Sgp2 mRNA, which are functional Sertoli cell markers, were significantly decreased. Level of Amh mRNA, a Sertoli cell immaturity marker, was significantly increased together with that of Inha mRNA, suggesting deregulation of the brain-gonadal axis. Together, our findings suggest that DBP at present dosage may potentiate LPO generation and Sertoli cell immaturity via downregulation of Sox9 and disruption of the Pou4f1-Prnd gene network in post-meiotic germ cells without visible changes in spermatogenesis or testosterone level. This may result in structural and functional abnormalities in spermatozoa. Additionally, our findings suggest that assessment of the male reproductive toxicity of phthalate ester plasticizers based on conventional OECD test guidelines should be reconsidered.
Assuntos
Plastificantes , Príons , Masculino , Camundongos , Animais , Plastificantes/toxicidade , Plastificantes/metabolismo , Príons/metabolismo , Príons/farmacologia , Testosterona , Sêmen , Dibutilftalato/toxicidade , Dibutilftalato/metabolismo , Testículo , Espermatozoides , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Rheumatoid arthritis (RA) is a chronic autoimmune disease that progresses into systemic inflammation and joint deformity. RA diagnosis is a complicated procedure, and early diagnostic methods are insufficient. Therefore, in this study, we attempted to identify new markers to improve the accuracy of RA prescreening. e identified differentially expressed proteins (DEPs) by using liquid chromatography tandem-mass spectrometry in health-prescreening sera with high rheumatoid factor (RF) values, and compared the findings with those from sera with normal RF values. We identified 93 DEPs; of these, 36 were upregulated, and 57 were downregulated in high-RF sera. Pathway analysis revealed that these DEPs were related to immune responses. Additionally, four DEPs were statistically analyzed by proteomic analysis; of these, SAA4 was significantly validated in individual enzyme-linked immunosorbent assays. Moreover, SAA4 was significantly upregulated in RA patients (n = 40, 66.43 ± 12.97 ng/mL) compared with normal controls (n = 40, 4.79 ± 0.95 ng/mL) and had a higher area under the curve than C-reactive protein. Thus, we identified SAA4 as a protein that was positively correlated with RF and RA. SAA4 may represent a novel prescreening marker for the diagnosis of RA.
Assuntos
Artrite Reumatoide/diagnóstico , Artrite Reumatoide/metabolismo , Biomarcadores/metabolismo , Cromatografia Líquida/métodos , Proteína Amiloide A Sérica/metabolismo , Espectrometria de Massas em Tandem/métodos , Adulto , Proteína C-Reativa/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , ProteômicaRESUMO
We report an all-fiber mode division multiplexer formed with cascaded mode selective couplers with significantly broadened bandwidth potentially spanning S, C and L band. This was achieved by matching the effective refractive indices over a wide wavelength range for the few mode fiber and the single mode fiber used in the coupler. The multiplexer provides high coupling efficiency (>55% for the worst case) for the 4 spatial modes over the entire wavelength range of 1515-1590 nm. The all-fiber construction provides mechanical stability. Experimental results for the coupling efficiency and the mode extinction ratio for each spatial mode are presented along with the far field radiation patterns.
RESUMO
The continuous miniaturization of dynamic random-access memory (DRAM) capacitors has amplified the demand for electrode materials featuring specific characteristics, such as low resistivity, high work function, chemical stability, excellent interface quality with high-k dielectrics, and superior mechanical properties. In this study, molybdenum nitride (MoNx) films were deposited using a plasma-enhanced atomic layer deposition (PEALD) employing bis(isopropylcyclopentadienyl)molybdenum(IV) dihydride and NH3 plasma for DRAM capacitor electrode applications. Depending on the deposition temperatures of the PEALD MoNx films ranging from 200 to 400 °C, the Mo/N ratio and crystal structure varied, transitioning from the cubic NaCl-B1-type MoN phase with Mo/N ratio of 1.4 to the cubic γ-Mo2N phase with Mo/N ratio of 1.9. Notably, MoNx films grown at 400 °C exhibited low resistivity (435 µΩ·cm), a high work function (5.28 eV), and superior mechanical hardness (11.3 GPa) compared to ALD TiN films. Despite these excellent properties, the PEALD MoNx electrode demonstrated insufficient chemical stability, particularly in terms of oxidation resistance and interface quality with ALD HfxZr1-xO2 (HZO) films. This resulted in poor morphology and the formation of significant oxygen-deficient HZO layers (such as HfO2-x), leading to considerable degradation in the electrical performance of metal-insulator-metal (MIM) capacitors. To mitigate this issue, a thin (2.5-14 nm) ALD TiN layer was introduced as a passivation layer between the MoNx bottom electrode and HZO dielectric. The TiN-passivated MoNx (TiN/MoNx) electrode showed substantially enhanced oxidation resistance and reduced interfacial reactions with the HZO dielectric. Consequently, MIM capacitors with TiN/MoNx bottom electrodes demonstrated outstanding electrical performance, including excellent dielectric properties, low leakage current density, and high mechanical strength. Hence, this study proposes a promising candidates for storage nodes in the next-generation DRAM capacitors.
RESUMO
Dynamic random-access memory (DRAM) capacitor electrodes, exemplified by TiN, face performance limitations owing to their relatively low work functions in addition to the formation of a low-k interfacial layer caused by their insufficient chemical stability. With recent advances in device scaling, these issues have become increasingly problematic, prompting the exploration of alternative electrode materials to replace TiN. Molybdenum dioxide (MoO2) has emerged as a promising candidate for this application, outperforming TiN due to its low resistivity, high work function (>5 eV), and excellent chemical stability. Moreover, monoclinic MoO2 exhibits a distorted rutile structure, enabling the in situ growth of high-k rutile TiO2 on MoO2 at low deposition temperatures. However, MoO2 deposition poses challenges because of its metastable nature compared to the more stable molybdenum oxide (MoOx) phases, such as MoO3 and Mo4O11. In this work, we successfully fabricated Sn-doped MoOx (TMO) films by atomic layer deposition (ALD) at 300 °C. A stabilized monoclinic MoO2 phase was achieved using ALD by incorporating SnOx into MoOx on both SiO2 and TiN substrates. The ALD TMO process comprised MoOx and SnOx subcycles, and the MoOx:SnOx subcycle ratio was varied from 100:1 to 20:1. High growth rates ranging from 0.19 to 0.34 nm/cycle were achieved for ALD TMO with varying the MoOx:SnOx subcycle ratio from 20:1 to 100:0. After post-deposition annealing at 500 °C, polycrystalline TMO films were obtained with smooth surface morphology. ALD TMO exhibited excellent interface quality with ALD TiO2, possessing a negligible low-k interfacial layer. Moreover, a rutile TiO2 film with a high dielectric constant of 136 was successfully grown on a 20% Sn-TMO electrode. Overall, this study provides a strategy to stabilize metastable MoO2 films using ALD, and it demonstrates the superiority of ALD TMO as a promising DRAM capacitor electrode material.
RESUMO
Low-molecular-weight heparin (LMWH), derived from unfractionated heparin (UFH), has enhanced anticoagulant efficacy, long duration of action, and extended half-life. Patients receiving LMWH for preventive therapies would strongly benefit from its long-term effects, however, achieving this is challenging. Here, we design and evaluate a nanoengineered LMWH and octadecylamine conjugate (LMHO) that can act for a long time while maintaining close to 97 ± 3% of LMWH activity via end-specific conjugation of the reducing end of LMWH. LMHO can self-assemble into nanoparticles with an average size of 105 ± 1.7 nm in water without any nanocarrier and can be combined with serum albumin, resulting in a lipid-based albumin shuttling effect. Such molecules can circulate in the bloodstream for 4-5 days. We corroborate the self-assembly capability of LMHO and its interaction with albumin through molecular dynamics (MD) simulations and transmission electron microscopy (TEM) analysis. This innovative approach to carrier-free polysaccharide delivery, enhanced by nanoengineered albumin shuttling, represents a promising platform to address limitations in conventional therapies.
Assuntos
Aminas , Anticoagulantes , Heparina de Baixo Peso Molecular , Simulação de Dinâmica Molecular , Nanopartículas , Heparina de Baixo Peso Molecular/química , Aminas/química , Humanos , Nanopartículas/química , Anticoagulantes/química , Anticoagulantes/farmacologia , Animais , Albumina Sérica/química , Albumina Sérica/metabolismo , Portadores de Fármacos/químicaRESUMO
In cancer therapy, photodynamic therapy (PDT) has attracted significant attention due to its high potential for tumor-selective treatment. However, PDT agents often exhibit poor physicochemical properties, including solubility, necessitating the development of nanoformulations. In this study, we developed two cationic peptide-based self-assembled nanomaterials by using a PDT agent, chlorin e6 (Ce6). To manufacture biocompatible nanoparticles based on peptides, we used the cationic poly-L-lysine peptide, which is rich in primary amines. We prepared low- and high-molecular-weight poly-L-lysine, and then evaluated the formation and performance of nanoparticles after chemical conjugation with Ce6. The results showed that both molecules formed self-assembled nanoparticles by themselves in saline. Interestingly, the high-molecular-weight poly-L-lysine and Ce6 conjugates (HPLCe6) exhibited better self-assembly and PDT performance than low-molecular-weight poly-L-lysine and Ce6 conjugates (LPLCe6). Moreover, the HPLCe6 conjugates showed superior cellular uptake and exhibited stronger cytotoxicity in cell toxicity experiments. Therefore, it is functionally beneficial to use high-molecular-weight poly-L-lysine in the manufacturing of poly-L-lysine-based self-assembling biocompatible PDT nanoconjugates.
Assuntos
Clorofilídeos , Peso Molecular , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Polilisina , Porfirinas , Polilisina/química , Porfirinas/química , Porfirinas/farmacologia , Humanos , Nanopartículas/química , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Sobrevivência Celular/efeitos dos fármacosRESUMO
Heparin is a glycosaminoglycans (GAGs) member and well-known FDA-approved anticoagulant that has been widely used in the clinic for 100 years. It has also been evaluated in various fields for further clinical applications, such as in anti-cancer or anti-inflammatory therapy beyond its anticoagulant effect. Here, we sought to utilize heparin molecules as drug carriers by directly conjugating the anticancer drug doxorubicin to the carboxyl group of unfractionated heparin. Given the molecular action of doxorubicin in intercalating DNA, it is expected to be less effective when structurally combined with other molecules. However, by utilizing doxorubicin molecules to produce reactive oxygen species (ROS), we found that the heparin-doxorubicin conjugates have significant cytotoxic ability to kill CT26 tumor cells with low anticoagulant activity. Several doxorubicin molecules were bound to heparin to provide sufficient cytotoxic capability and self-assembly ability due to their amphiphilic properties. The self-assembled formation of these nanoparticles was demonstrated through DLS, SEM and TEM. The cytotoxic ROS-generating doxorubicin-conjugated heparins could inhibit tumor growth and metastasis in CT26-bearing Balb/c animal models. Our results demonstrate that this cytotoxic doxorubicin-based heparin conjugate can significantly inhibit tumor growth and metastasis, thus showing promise as a potential new anti-cancer therapeutic.
Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Animais , Heparina/farmacologia , Espécies Reativas de Oxigênio , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêuticoRESUMO
Korean bellflower (Campanula takesimana Nakai) is a rare and perennial herb with medicinal and ornamental values, is endemic to the Ulleung Island of Korea. In this study, we investigated the dormancy-release and germination characteristics of C. takesimana (Campanulaceae) seeds by subjecting them to varying temperatures (5, 10, 15, 20, and 25°C and diurnal/nocturnal temperatures of 15/6, 20/10, and 25/15°C), cold stratification periods (0, 4, 8, or 12 weeks at 5°C), and gibberellic acid (GA3) concentrations (0, 10, 100, or 1,000 mg·L-1 at 15/6°C and 25/15°C) to identify the ideal seed propagation conditions. The seeds were stimulated to germinate (at 25°C, 12-h photoperiod with fluorescent lamps at 40 ± 10 µmolâm-2âs-1) after cold stratification. To examine the germination characteristics, the seeds were tested for water imbibition and found to readily absorb water. The seeds exhibited underdeveloped embryos during dispersal, showed final germination of 37.00% ± 4.43 at 25°C and were not influenced by temperature. The seeds subjected to 0, 4, 8, or 12 weeks of cold stratification germinated at a success rate of 22.00% ± 4.76, 87.00% ± 6.80, 79.00% ± 2.52, and 77.00% ± 1.91, respectively. Additionally, the germination characteristics, which were based on final germination, mean germination time, and germination velocity (Timson index), were significantly greater in the seeds pretreated with 1,000 mg·L-1 GA3 at 25/15°C than in seeds pretreated with 0 mg·L-1 GA3. Overall, the seeds broke dormancy with GA3 and short-term cold stratification. Therefore, we concluded that C. takesimana seeds have non-deep, simple, morphophysiological dormancy, and pretreatment with cold stratification and GA3 is required for effective seed propagation.
Assuntos
Campanulaceae , Codonopsis , Temperatura , Sementes/fisiologia , Água , República da Coreia , Germinação/fisiologia , Dormência de Plantas/fisiologiaRESUMO
Apigetrin is a flavonoid glycoside phytochemical that is derived from various herbs and exhibits several beneficial biological activities, including anti-oxidant, anti-inflammatory, anti-obesity, and anti-cancer effects. In the present study, we elucidated the anti-cancer effect and targeting mechanism of apigetrin in LNCaP and PC-3 cells through various experiments, including cell viability by CELLOMAXTM Viability Assay kit, cell migration by scratch wound assays, and 2D-and 3D- cell growth assay. Apigetrin inhibited the viability, migration, proliferation, and growth of cells in long-term 2D- and 3D- cultures cell growth. A high dose of apigetrin induced apoptosis, as evidenced by increased cleavage of poly ADP-ribose polymerase (PARP) and caspase-3 (c-cas3) in both LNCaP and PC-3 cells. Furthermore, apigetrin inhibited AR, PSA, HIF-1α, and VEGF expression in LNCaP and PC-3 cells. Apigetrin also suppressed the hypoxia-induced HIF-1α expression in these cells. Furthermore, apigetrin reduced hypoxia-induced VEGF secretion in the culture medium and inhibited hypoxia-induced tube formation of HUVECs. Silencing of AKT revealed that the anti-cancer activity of apigetrin is mediated via AKT. Thus, our data suggest that apigetrin exerts anti-cancer effects by inhibiting AKT, a central key of HIF-1α and AR signaling, in early-and late-stage prostate cancer cells.
RESUMO
The development of smart elastomeric materials with inherent self-repairing abilities after mechanical damage has important technological and scientific implications, particularly in regard to the durability and life cycle of rubber products. The interest in self-healing materials for automotive applications is rapidly growing along with the increasing importance of vehicle scratch quality and quantity. The creation of a reversible network by noncovalent ionic cross-linking in elastomer/rubber blends is an effective approach to generate the self-healing phenomenon, with reprocessing and recycling properties. In this work, thermoplastic vulcanizates (TPVs) were prepared using ethylene-propylene-diene (EPDM) polymers and high-acid-containing thermoplastic ionomers. Along with the general EPDM, maleic anhydride grafted EPDM (EPDM-g-MAH) was also used for the preparation of the TPVs. The strategy was based on a simple ionic crosslinking reaction between the carboxyl groups present in the ionomer and zinc oxide (ZnO), where the formation of reversible Zn2+ salt bondings exhibits the self-healing behavior. The heterogeneous blending of EPDM and ionomers was also used to investigate the thermal and mechanical properties of the TPVs. The experimental findings were further supported by the surface morphology of the fracture surfaces viewed using microscopy. The self-healing behavior of the TPVs has been identified by scratch resistance testing, where the EPDM-g-MAH TPVs showed excellent healing efficiency of the scratch surface. Therefore, this work provides an efficient approach to fabricate new ionically cross-linked thermoplastic vulcanizates with excellent mechanical and self-repairing properties for the skins of automotive interior door trims and instrument panel applications.
RESUMO
This study investigated the kind of seed dormancy and seed germination of Gentiana triflora var. japonica (Kusn.) H. Hara for developing a seed propagation method. The seeds were collected in October 2020 from plants at Mt. Sobaeksan, Korea. In a water imbibition experiment, seed weights increased by >101.9% of their initial masses over 12 h. Effects of incubation temperature (5, 15, 20, 25, 15/6, or 25/15 °C), cold stratification period (5 °C; 0, 4, 8, or 12 weeks), and gibberellic acid (GA3; 0, 10, 100, or 1000 mgâL-1) and potassium nitrate treatment (KNO3; 0, 1000, 2000, or 4000 mgâL-1) on seed germination were investigated to characterize seed dormancy. These seeds exhibited underdeveloped embryos during seed dispersal. The seeds failed to reach the final germination of 15.0% after treatment at 5, 15, 20, 25, 15/6, or 25/15 °C. After cold stratification for 8 weeks, the germination increased dramatically by >90.0% compared to that at 0 weeks. After the GA3 treatment, the germination reached >80.0% within 5 days. The final germination was 90.0% in the 100 mgâL-1 GA3 treatment group. However, the KNO3 treatment had no effect on seed germination. Therefore, the G. triflora var. japonica seeds exhibited non-deep simple morphophysiological dormancy.
RESUMO
As the COVID-19 pandemic continues to spread, hundreds of new initiatives including studies on existing medicines are running to fight the disease. To deliver a potentially immediate and lasting treatment to current and emerging SARS-CoV-2 variants, new collaborations and ways of sharing are required to create as many paths forward as possible. Here, we leverage our expertise in computational antibody engineering to rationally design/engineer three previously reported SARS-CoV neutralizing antibodies and share our proposal towards anti-SARS-CoV-2 biologics therapeutics. SARS-CoV neutralizing antibodies, m396, 80R and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization potency against SARS-CoV (but not SARS-CoV-2 except for CR3022). Structures of variable fragment (Fv) in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV-2 were subjected to our established in silico antibody engineering platform to improve their binding affinity to SARS-CoV-2 and developability profiles. The selected top mutations were ensembled into a focused library for each antibody for further screening. In addition, we convert the selected binders with different epitopes into the trispecific format, aiming to increase potency and to prevent mutational escape. Lastly, to avoid antibody-induced virus activation or enhancement, we suggest application of NNAS and DQ mutations to the Fc region to eliminate effector functions and extend half-life.
RESUMO
Electrofermentation actively regulates the bacterial redox state, which is essential for bioconversion and has been highlighted as an effective method for further improvements of the productivity of either reduced or oxidized platform chemicals. 1,3-Propanediol (1,3-PDO) is an industrial value-added chemical that can be produced from glycerol fermentation. The bioconversion of 1,3-PDO from glycerol requires additional reducing energy under anoxic conditions. The cathode-based conversion of glycerol to 1,3-PDO with various electron shuttles (2-hydroxy-1,4-naphthoquinone, neutral red, and hydroquinone) using Klebsiella pneumoniae L17 was investigated. The externally poised potential of -0.9â V vs. Ag/AgCl to the cathode increased 1,3-PDO (35.5±3.1â mm) production if 100â µm neutral red was used compared with non-bioelectrochemical system fermentation (23.7±2.4â mm). Stoichiometric metabolic flux and transcriptional analysis indicated a shift in the carbon flux toward the glycerol reductive pathway. The homologous overexpression of glycerol dehydratase (DhaB) and 1,3-PDO oxidoreductase (DhaT) enzymes synergistically enhanced 1,3-PDO conversion (39.3±0.8â mm) under cathode-driven fermentation. Interestingly, a small current uptake (0.23â mmol of electrons) caused significant metabolic flux changes with a concomitant increase in 1,3-PDO production. This suggests that both an increase in 1,3-PDO production and regulation of the cellular metabolic pathway are feasible by electrode-driven control in cathodic electrofermentation.
Assuntos
Glicerol/química , Klebsiella pneumoniae/metabolismo , Propilenoglicóis/química , Técnicas Eletroquímicas/métodos , Eletrodos , Transporte de Elétrons , Fermentação , Hidroliases/metabolismo , Hidroquinonas/química , Naftoquinonas/química , Vermelho Neutro/química , Oxirredução , Oxirredutases/metabolismo , Transdução de SinaisRESUMO
Cognitive decline is observed in aging and neurodegenerative diseases, including Alzheimer's disease (AD) and dementia. Intracellular energy produced via mitochondrial respiration is used in the regulation of synaptic plasticity and structure, including dendritic spine length and density, as well as for the release of neurotrophic factors involved in learning and memory. To date, a few synthetic agents for improving mitochondrial function have been developed for overcoming cognitive impairment. However, no natural compounds that modulate synaptic plasticity by directly targeting mitochondria have been developed. Here, we demonstrate that a mixture of Schisandra chinensis extract (SCE) and ascorbic acid (AA) improved cognitive function and induced synaptic plasticity-regulating proteins by enhancing mitochondrial respiration. Treatment of embryonic mouse hippocampal mHippoE-14 cells with a 4:1 mixture of SCE and AA increased basal oxygen consumption rate. We found that mice injected with the SCE-AA mixture showed enhanced learning and memory and recognition ability. We further observed that injection of the SCE-AA mixture in mice significantly increased expression of postsynaptic density protein 95 (PSD95), an increase that was correlated with enhanced brain-derived neurotrophic factor (BDNF) expression. These results demonstrate that a mixture of SCE and AA improves mitochondrial function and memory, suggesting that this natural compound mixture could be used to alleviate AD and aging-associated memory decline.
Assuntos
Ácido Ascórbico/farmacologia , Respiração Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/farmacologia , Schisandra/química , Animais , Linhagem Celular , Sinergismo Farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Aprendizagem/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Consumo de Oxigênio/efeitos dos fármacos , Extratos Vegetais/química , Células Piramidais/efeitos dos fármacos , Células Piramidais/metabolismoRESUMO
BACKGROUND: This study used the National Emergency Department Information System (NEDIS) data to analyze the flow of emergency and critical emergency patients and to identify the patterns of emergency medical service usage in Korea. METHODS: The relevance index (RI) and commitment index (CI) were calculated from the 2016 NEDIS data. In this study, the number of clusters was determined using NbClust, and cluster analysis was used to analyze the usage patterns of emergency and critical emergency patients. RESULTS: The RI and CI were calculated using 8,389,766 cases of 214 districts. The results of the RI and CI suggested that there were 3 types of clusters among the emergency patients. In Cluster 1, 54 districts (25.2%) had low RI and high CI, and it was of outflow type. Cluster 2 was categorized as the influx-type in 58 districts (27.1%) irrespective of RI and low CI. Cluster 3 was categorized as the self-sufficient type found in 102 districts (47.7%), with high RI and high CI. The cluster analysis of the critical emergency patients was divided into 2 types. Cluster 1 was categorized as outflow type with high CI found in 129 districts (60.3%), while Cluster 2 was categorized as inflow type with low CI found in 85 districts (39.7%). CONCLUSIONS: This study elucidates the regional status of usage patterns of emergency and critical emergency patients in Korea. This study might serve as a basis for the establishment and selection of emergency medical service areas and vulnerable emergency medical service areas.
Assuntos
Serviços Médicos de Emergência , Serviço Hospitalar de Emergência , Análise por Conglomerados , Humanos , Modelos Teóricos , República da CoreiaRESUMO
The increase in inflammatory cytokines and chemokines is a common denominator in the pathogenesis of acute lung injury (ALI) which are involved in the influx of inflammatory cells and lung damage. The aim of the present study was to evaluate the protective effect of 3,4,5-trihydroxycinnamic acid (THC) in lipopolysaccharide (LPS)-induced ALI. THC efficiently decreased the mRNA expression of interleukin-8 (IL-8) in LPS-stimulated A549 airway epithelial cells. THC induced heme oxygenase-1 (HO-1) expression in A549 cells. THC also increased the activation of AMP-activated protein kinase (AMPK) in A549 cells and RAW264.7 macrophages. In LPS-induced ALI in mice, THC significantly suppressed neutrophil influx and monocyte chemoattractant protein-1 (MCP-1) production in the bronchoalveolar lavage fluid (BALF). THC also attenuated the levels of neutrophil elastase (NE), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF and serum. In addition, THC inhibited the expressions of inducible nitric oxide synthase (iNOS) and the activation of nuclear factor-kappa B (NF-κB) in the lung. These protective effects of THC were accompanied with HO-1 induction and AMPK activation. Taken together, the present study clearly demonstrates that THC significantly attenuates the LPS-induced ALI, suggesting that THC might be a valuable therapeutic adjuvant in airway inflammatory disorders.
Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Lesão Pulmonar Aguda/tratamento farmacológico , Ácidos Cumáricos/uso terapêutico , Heme Oxigenase-1/fisiologia , Lipopolissacarídeos/toxicidade , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Quimiocina CCL2/biossíntese , Ácidos Cumáricos/farmacologia , Citocinas/biossíntese , Humanos , Elastase de Leucócito/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/fisiologia , Células RAW 264.7RESUMO
The fumigant and contact toxicities of 16 Asteraceae plant essential oils and their constituents against adult male and female Blattella germanica were examined. In a fumigant toxicity test, tarragon oil exhibited 100% and 90% fumigant toxicity against adult male German cockroaches at 5 and 2.5 mg/filter paper, respectively. Fumigant toxicities of Artemisia arborescens and santolina oils against adult male German cockroaches were 100% at 20 mg/filter paper, but were reduced to 60% and 22.5% at 10 mg/filter paper, respectively. In contact toxicity tests, tarragon and santolina oils showed potent insecticidal activity against adult male German cockroaches. Components of active oils were analyzed using gas chromatography, gas chromatography-mass spectrometry, or nuclear magnetic resonance spectrometer. Among the identified compounds from active essential oils, estragole demonstrated potent fumigant and contact toxicity against adult German cockroaches. ß-Phellandrene exhibited inhibition of male and female German cockroach acetylcholinesterase activity with IC50 values of 0.30 and 0.28 mg/mL, respectively.
Assuntos
Asteraceae/química , Blattellidae/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Proteínas de Insetos/antagonistas & inibidores , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Animais , Blattellidae/enzimologia , Inibidores Enzimáticos/química , Esterases/metabolismo , Feminino , Proteínas de Insetos/metabolismo , Inseticidas/química , Masculino , Óleos Voláteis/química , Óleos de Plantas/químicaRESUMO
BACKGROUND: Malignant hyperthermia (MH) is genetically heterogeneous, with mutations in the gene encoding the skeletal muscle ryanodine receptor (RYR1) at 19q13.1 accounting for up to 80% of the cases. However, the search for known and novel mutations in the RYR1 gene is hampered by the fact that the gene contains 106 exons. We aimed to analyze mutations from the entire RYR1 coding region in Korean MH families. METHODS: We investigated seven affected MH individuals and their family members. The entire RYR1 coding region from the genomic DNA was sequenced, and RYR1 haplotyping and mutational analysis were carried out. RESULTS: We identified nine different RYR1 mutations or variations from seven Korean MH families. Among these, five previously reported mutations (p.Gly248Arg, p.Arg2435His, p.Arg2458His, p.Arg2676Trp, and p.Leu4838Val) and four novel variations of unknown significance (p.Arg2508Cys, p.Met4022Val, p.Glu2669Lys, and p.Ala4295Val) were identified. In two families, two variations (R2676W & M4022V, R2435H & A4295V, respectively) were identified simultaneously. Four of the observed nine mutations or variations were located outside the hotspot region of RYR1 mutations. CONCLUSIONS: These data indicate that RYR1 is a main candidate gene in Korean MH families, and that comprehensive screening of the entire coding sequence of the RYR1 gene is necessary for molecular genetic investigations in MH-susceptible individuals, owing to the presence of RYR1 mutations or variations outside of the hotspot region.