Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
2.
Nat Immunol ; 18(9): 1004-1015, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28759001

RESUMO

Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-ß-signaling-dependent conversion of NK cells (CD49a-CD49b+Eomes+) into intermediate type 1 innate lymphoid cell (intILC1) (CD49a+CD49b+Eomes+) populations and ILC1 (CD49a+CD49b-Eomesint) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-ß-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.


Assuntos
Reprogramação Celular/imunologia , Fibrossarcoma/imunologia , Neoplasias Gastrointestinais/imunologia , Tumores do Estroma Gastrointestinal/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Neoplasias Experimentais/imunologia , Evasão Tumoral/imunologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Células Matadoras Naturais/citologia , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Análise de Sequência de RNA , Transdução de Sinais , Fator de Crescimento Transformador beta/imunologia
3.
Immunity ; 45(2): 333-45, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533014

RESUMO

Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4(+) T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adamantano/análogos & derivados , Adamantano/uso terapêutico , Adulto , Animais , Antimaláricos/uso terapêutico , Antígeno B7-H1/genética , Células Cultivadas , Ensaios Clínicos como Assunto , Células Dendríticas/parasitologia , Feminino , Humanos , Imunidade Celular , Ativação Linfocitária , Malária Falciparum/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Parasitemia/imunologia , Peróxidos/uso terapêutico , Proteína 2 Ligante de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/genética , Pirimidinas/uso terapêutico , Triazóis/uso terapêutico , Adulto Jovem
4.
J Am Chem Soc ; 144(33): 15079-15092, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35793461

RESUMO

Ga-chabazite zeolites (Ga-CHA) have been found to efficiently catalyze propane dehydrogenation with high propylene selectivity (96%). In situ Fourier transform infrared spectroscopy and pulse titrations are employed to determine that upon reduction, surface Ga2O3 is reduced and diffuses into the zeolite pores, displacing the Brønsted acid sites and forming extra-framework Ga+ sites. This isolated Ga+ site reacts reversibly with H2 to form GaHx (2034 cm-1) with an enthalpy of formation of ∼-51.2 kJ·mol-1, a result supported by density functional theory calculations. The initial C3H8 dehydrogenation rates decrease rapidly (40%) during the first 100 min and then decline slowly afterward, while the C3H6 selectivity is stable at ∼96%. The reduction in the reaction rate is correlated with the formation of polycyclic aromatics inside the zeolite (using UV-vis spectroscopy) indicating that the accumulation of polycyclic aromatics is the main cause of the deactivation. The carbon species formed can be easily oxidized at 600 °C with complete recovery of the PDH catalytic properties. The correlations between GaHx vs Ga/Al ratio and PDH rates vs Ga/Al ratio show that extra-framework Ga+ is the active center catalyzing propane dehydrogenation. The higher reaction rate on Ga+ than In+ in CHA zeolites, by a factor of 43, is the result of differences in the stabilization of the transition state due to the higher stability of Ga3+ vs In3+. The uniformity of the Ga+ sites in this material makes it an excellent model for the molecular understanding of metal cation-exchanged hydrocarbon interactions in zeolites.

5.
Endocr Pract ; 28(9): 889-896, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809774

RESUMO

OBJECTIVE: Phenoxybenzamine (nonselective, noncompetitive alpha-blocker) is the preferred drug for preoperative treatment of pheochromocytoma, but doxazosin (selective, competitive alpha-blocker) may be equally effective. We compared the efficacy of doxazosin vs phenoxybenzamine. METHODS: We conducted a prospective study of patients undergoing pheochromocytoma or paraganglioma resection by randomizing pretreatment with phenoxybenzamine or doxazosin at a single tertiary referral center. The high cost of phenoxybenzamine led to high crossover to doxazosin. Randomization was halted, and a consecutive historical cohort of phenoxybenzamine patients was included for a case-control study design. The efficacy of alpha-blockade was assessed with preinduction infusion of incremental doses of phenylephrine. The primary outcomes were mortality, cardiovascular complications, and intensive care unit admission. The secondary outcomes were hemodynamic instability index (proportion of operation outside of hemodynamic goals), adequacy of blockade by the phenylephrine titration test, and drug costs. RESULTS: Twenty-four patients were prospectively enrolled (doxazosin, n = 20; phenoxybenzamine, n = 4), and 15 historical patients treated with phenoxybenzamine were added (total phenoxybenzamine, n = 19). No major cardiovascular complications occurred in either group. The phenylephrine dose-response curves showed less blood pressure rise in the phenoxybenzamine than in the doxazosin group (linear regression coefficient = 0.008 vs 0.018, P = .01), suggesting better alpha-blockade in the phenoxybenzamine group. The median hemodynamic instability index was 14% vs 13% in the phenoxybenzamine and doxazosin groups, respectively (P = .56). The median highest daily cost of phenoxybenzamine was $442.20 compared to $5.06 for doxazosin. CONCLUSION: Phenoxybenzamine may blunt intraoperative hypertension better than doxazosin, but this difference did not translate to fewer cardiovascular complications and is offset by a considerably increased cost.


Assuntos
Neoplasias das Glândulas Suprarrenais , Feocromocitoma , Neoplasias das Glândulas Suprarrenais/tratamento farmacológico , Neoplasias das Glândulas Suprarrenais/cirurgia , Antagonistas Adrenérgicos alfa/uso terapêutico , Estudos de Casos e Controles , Doxazossina/farmacologia , Doxazossina/uso terapêutico , Humanos , Fenoxibenzamina/farmacologia , Fenoxibenzamina/uso terapêutico , Fenilefrina/uso terapêutico , Feocromocitoma/tratamento farmacológico , Feocromocitoma/cirurgia , Estudos Prospectivos
6.
J Phys Chem A ; 125(19): 4062-4069, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33969688

RESUMO

The mechanism by which acid zeolites catalyze the formation of aromatic species is not fully understood and is important in an array of industrial processes such as the methanol to gasoline reaction. The so-called "carbon pool" mechanism is generally agreed to be the main channel for the formation of hydrocarbons from methanol. There is, however, no agreed sequence of elementary steps that explains how linear intermediates transform to cyclic intermediates, let alone aromatic rings. Recent work suggests the formation of conjugated trienes during zeolite-catalyzed aromatization, but mechanisms involving triene-derived carbocations have never been investigated using modern computational tools. In this work, we propose a new mechanism for cyclization of hexatriene over the Brønsted acid site of faujasite zeolite. Microkinetic models (MKM) using the results of Density Functional Theory (DFT) calculations predict selectivity for neutral 5-membered-ring intermediates over 6-membered-ring intermediates, as suggested by infrared and UV-vis spectroscopic results reported by others. Given that the products of aromatization are 6-membered rings, this result suggests that triene cyclization can only explain how linear hydrocarbons become cyclic intermediates but not the mechanisms that ultimately lead to the aromatic rings seen in industrial zeolite-catalyzed hydrocarbon processes.

7.
J Immunol ; 200(10): 3547-3555, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29626088

RESUMO

IL-6 mediates broad physiological and pathological effects through its receptor signal transducing unit gp130. Due to the reportedly wide cellular expression of gp130, IL-6 is thought to signal ubiquitously via gp130 complex formation with membrane-bound IL-6Rα or soluble IL-6Rα. gp130 signaling primarily induces p-STAT3 and p-STAT1. In contrast to the previous dogma, we show in this article that circulating mouse and human granulocytes are unable to induce p-STAT3 or p-STAT1 after stimulation with IL-6 or an IL-6/soluble IL-6R complex. Furthermore, we demonstrate that this is due to a lack of gp130 expression on mouse and human granulocytes, despite their expression of membrane-bound IL-6R. Importantly, the absence of gp130 is not only a feature of mature granulocytes in healthy individuals, it is also observed after allogeneic stem cell transplantation. Moreover, granulocyte gp130 expression is lost during maturation, because granulocyte-monocyte progenitor cells express gp130 and respond to IL-6. Given that granulocytes constitute 50-70% of circulating leukocytes, this indicates a significantly smaller scope of IL-6 signaling than previously anticipated and has important implications for therapeutic IL-6 inhibition and the mechanisms of action thereof.


Assuntos
Receptor gp130 de Citocina/metabolismo , Granulócitos/metabolismo , Interleucina-6/metabolismo , Animais , Feminino , Humanos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia
8.
Mol Cell ; 48(4): 572-86, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23063525

RESUMO

Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, RORα. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Culina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Células MCF-7 , Metilação , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Proteínas Serina-Treonina Quinases , Especificidade por Substrato
9.
Proc Natl Acad Sci U S A ; 114(27): 7077-7082, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28630300

RESUMO

G9a is an epigenetic regulator that methylates H3K9, generally causing repression of gene expression, and participates in diverse cellular functions. G9a is genetically deregulated in a variety of tumor types and can silence tumor suppressor genes and, therefore, is important for carcinogenesis. Although hypoxia is recognized to be an adverse factor in tumor growth and metastasis, the role of G9a in regulating gene expression in hypoxia has not been described extensively. Here, we show that G9a protein stability is increased in hypoxia via reduced proline hydroxylation and, hence, inefficient degradation by the proteasome. This inefficiency leads to an increase in H3K9me2 at its target promoters. Blocking the methyltransferase activity of G9a inhibited cellular proliferation and migration in vitro and tumor growth in vivo. Furthermore, an increased level of G9a is a crucial factor in mediating the hypoxic response by down-regulating the expression of specific genes, including ARNTL, CEACAM7, GATA2, HHEX, KLRG1, and OGN This down-regulation can be rescued by a small molecule inhibitor of G9a. Based on the hypothesis that the changes in gene expression would influence patient outcomes, we have developed a prognostic G9a-suppressed gene signature that can stratify breast cancer patients. Together, our findings provide an insight into the role G9a plays as an epigenetic mediator of hypoxic response, which can be used as a diagnostic marker, and proposes G9a as a therapeutic target for solid cancers.


Assuntos
Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Hipóxia/genética , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células , Intervalo Livre de Doença , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/genética , Camundongos , Camundongos Endogâmicos C57BL , Prognóstico , Prolina/química , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno/metabolismo , Recidiva , Microambiente Tumoral
10.
Am J Hum Genet ; 99(4): 903-911, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27640304

RESUMO

Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cromossomos Humanos Par 5/genética , Fator 10 de Crescimento de Fibroblastos/genética , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único/genética , Receptores de Estrogênio/metabolismo , Alelos , Estudos de Casos e Controles , Linhagem Celular Tumoral , Elementos Facilitadores Genéticos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Haplótipos/genética , Humanos , Regiões Promotoras Genéticas/genética , Locos de Características Quantitativas/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
11.
Am J Hum Genet ; 98(5): 830-842, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-27087319

RESUMO

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/genética , Pólipos Adenomatosos/genética , Éxons/genética , Mutação Puntual/genética , Neoplasias Gástricas/genética , Desequilíbrio Alélico/genética , Variações do Número de Cópias de DNA/genética , Exoma/genética , Feminino , Mucosa Gástrica/metabolismo , Ligação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Perda de Heterozigosidade , Masculino , Linhagem , Regiões Promotoras Genéticas/genética
12.
Mol Cell ; 44(5): 797-810, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152482

RESUMO

A critical component of the DNA damage response is the p53 tumor suppressor, and aberrant p53 function leads to uncontrolled cell proliferation and malignancy. Several molecules have been shown to regulate p53 stability; however, genome-wide systemic approaches for determining the affected, specific downstream target genes have not been extensively studied. Here, we first identified an orphan nuclear receptor, RORα, as a direct target gene of p53, which contains functional p53 response elements. The functional consequences of DNA damage-induced RORα are to stabilize p53 and activate p53 transcription in a HAUSP/Usp7-dependent manner. Interestingly, microarray analysis revealed that RORα-mediated p53 stabilization leads to the activation of a subset of p53 target genes that are specifically involved in apoptosis. We further confirmed that RORα enhances p53-dependent, in vivo apoptotic function in the Drosophila model system. Together, we determined that RORα is a p53 regulator that exerts its role in increased apoptosis via p53.


Assuntos
Apoptose , Dano ao DNA , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Estabilidade Proteica , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Regiões Promotoras Genéticas/genética , Elementos de Resposta/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
13.
Biofouling ; 35(8): 870-882, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31603038

RESUMO

Steel marine structures provide foci of biodiversity when they develop into artificial reefs. Development begins with deposition of a biofilm. The effects of contaminants from oil spills on biofilm microbiomes, microbially-induced corrosion (MIC) and metal loss may impact preservation of marine metal structures. A microcosm experiment exposed biofilms on carbon steel disks (CSDs) to crude oil, dispersant, and dispersed oil to address their impacts on bacterial composition and metal loss and pitting. Biofilm diversity increased over time in all exposures. Community composition in dispersant and dispersed oil treatments deviated from the controls for the duration of a 12-week experiment. As biofilms matured, Pseudomonadaceae increased while Rhodobacteraceae decreased in abundance in dispersed oil treatments compared to the controls and dispersant treatments. Greatest mass loss and deepest pitting on CSDs were observed in dispersed oil treatments, suggesting impacts manifest as a consequence of increased MIC potential on carbon steel.


Assuntos
Biofilmes/efeitos dos fármacos , Manufaturas/microbiologia , Microbiota/efeitos dos fármacos , Poluição por Petróleo/efeitos adversos , Proteobactérias/efeitos dos fármacos , Aço , Biodiversidade , Biofilmes/crescimento & desenvolvimento , Carbono/química , Corrosão , Petróleo/análise , Petróleo/toxicidade , Poluição por Petróleo/análise , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Aço/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Am J Hum Genet ; 97(2): 329-36, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26211970

RESUMO

The gene(s) whose expression is regulated by allergy risk variants is unknown for many loci identified through genome-wide association studies. Addressing this knowledge gap might point to new therapeutic targets for allergic disease. The aim of this study was to identify the target gene(s) and the functional variant(s) underlying the association between rs7009110 on chromosome 8q21 and allergies. Eight genes are located within 1 Mb of rs7009110. Multivariate association analysis of publicly available exon expression levels from lymphoblastoid cell lines (LCLs) identified a significant association between rs7009110 and the expression of a single gene, PAG1 (p = 0.0017), 732 kb away. Analysis of histone modifications and DNase I hypersensitive sites in LCLs identified four putative regulatory elements (PREs) in the region. Chromosome conformation capture confirmed that two PREs interacted with the PAG1 promoter, one in allele-specific fashion. To determine whether these PREs were functional, LCLs were transfected with PAG1 promoter-driven luciferase reporter constructs. PRE3 acted as a transcriptional enhancer for PAG1 exclusively when it carried the rs2370615:C allergy predisposing allele, a variant in complete linkage disequilibrium with rs7009110. As such, rs2370615, which overlaps RelA transcription factor (TF) binding in LCLs and was found to disrupt Foxo3a binding to PRE3, represents the putative functional variant in this locus. Our studies suggest that the risk-associated allele of rs2370615 predisposes to allergic disease by increasing PAG1 expression, which might promote B cell activation and have a pro-inflammatory effect. Inhibition of PAG1 expression or function might have therapeutic potential for allergic diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cromossomos Humanos Par 8/genética , Regulação da Expressão Gênica/genética , Hipersensibilidade/genética , Proteínas de Membrana/genética , Linfócitos B/imunologia , Estudos de Associação Genética , Humanos , Hipersensibilidade/imunologia , Desequilíbrio de Ligação , Luciferases , Ativação Linfocitária/genética , Análise Multivariada , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único/genética , Sequências Reguladoras de Ácido Nucleico/genética
15.
Mol Cell ; 37(2): 183-95, 2010 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-20122401

RESUMO

Wnt family members play diverse roles in development and disease. Noncanonical Wnt ligands can inhibit canonical Wnt signaling depending on the cellular context; however, the underlying mechanism of this antagonism remains poorly understood. Here we identify a specific mechanism of orphan nuclear receptor RORalpha-mediated inhibition of canonical Wnt signaling in colon cancer. Wnt5a/PKCalpha-dependent phosphorylation on serine residue 35 of RORalpha is crucial to link RORalpha to Wnt/beta-catenin signaling, which exerts inhibitory function of the expression of Wnt/beta-catenin target genes. Intriguingly, there is a significant correlation of reduction of RORalpha phosphorylation in colorectal tumor cases compared to their normal counterpart, providing the clinical relevance of the findings. Our data provide evidence for a role of RORalpha, functioning at the crossroads between the canonical and the noncanonical Wnt signaling pathways, in mediating transrepression of the Wnt/beta-catenin target genes, thereby providing new approaches for the development of therapeutic agents for human cancers.


Assuntos
Carcinoma/metabolismo , Neoplasias do Colo/metabolismo , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/fisiologia , Proteína Quinase C-alfa/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/química , Membro 1 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Fosforilação
16.
Mol Cell ; 39(1): 71-85, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20603076

RESUMO

Lysine methylation within histones is crucial for transcriptional regulation and thus links chromatin states to biological outcomes. Although recent studies have extended lysine methylation to nonhistone proteins, underlying molecular mechanisms such as the upstream signaling cascade that induces lysine methylation and downstream target genes modulated by this modification have not been elucidated. Here, we show that Reptin, a chromatin-remodeling factor, is methylated at lysine 67 in hypoxic conditions by the methyltransferase G9a. Methylated Reptin binds to the promoters of a subset of hypoxia-responsive genes and negatively regulates transcription of these genes to modulate cellular responses to hypoxia.


Assuntos
Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Animais , Hipóxia Celular/genética , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisina/metabolismo , Metilação , Camundongos , Modelos Biológicos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Adv Exp Med Biol ; 963: 283-298, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28197919

RESUMO

Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
18.
Proc Natl Acad Sci U S A ; 109(25): 9786-91, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665775

RESUMO

Multipotent adipose-derived stem cells (ASCs) are increasingly used for regenerative purposes such as soft tissue reconstruction following mastectomy; however, the ability of tumors to commandeer ASC functions to advance tumor progression is not well understood. Through the integration of physical sciences and oncology approaches we investigated the capability of tumor-derived chemical and mechanical cues to enhance ASC-mediated contributions to tumor stroma formation. Our results indicate that soluble factors from breast cancer cells inhibit adipogenic differentiation while increasing proliferation, proangiogenic factor secretion, and myofibroblastic differentiation of ASCs. This altered ASC phenotype led to varied extracellular matrix (ECM) deposition and contraction thereby enhancing tissue stiffness, a characteristic feature of breast tumors. Increased stiffness, in turn, facilitated changes in ASC behavior similar to those observed with tumor-derived chemical cues. Orthotopic mouse studies further confirmed the pathological relevance of ASCs in tumor progression and stiffness in vivo. In summary, altered ASC behavior can promote tumorigenesis and, thus, their implementation for regenerative therapy should be carefully considered in patients previously treated for cancer.


Assuntos
Tecido Adiposo/citologia , Neoplasias da Mama/terapia , Transplante de Células-Tronco , Animais , Neoplasias da Mama/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Progressão da Doença , Matriz Extracelular , Feminino , Humanos , Camundongos , Transplante de Neoplasias
19.
Biofouling ; 30(8): 941-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25271874

RESUMO

Despite obvious differences in morphology, substratum chemistry and the electrolyte in which they form, accumulations of iron corrosion products have the following characteristics in common: stratification of iron oxides/hydroxides with a preponderance of α-FeOOH (goethite) and accumulation of metals. Bacteria, particularly iron-oxidizing and sulfate-reducing bacteria have been identified in some accumulations. Both biotic and abiotic mechanisms have been used to rationalize observations for particular sets of environmental data. This review is the first to compare observations and interpretations.


Assuntos
Bactérias/metabolismo , Água Doce/microbiologia , Compostos de Ferro/metabolismo , Água do Mar/microbiologia , Corrosão , Água Doce/química , Hidróxidos/química , Hidróxidos/metabolismo , Compostos de Ferro/química , Minerais/química , Minerais/metabolismo , Óxidos/química , Óxidos/metabolismo , Água do Mar/química
20.
Proc Natl Acad Sci U S A ; 108(33): 13510-5, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21825155

RESUMO

Pontin is a chromatin remodeling factor that possesses both ATPase and DNA helicase activities. Although Pontin is frequently overexpressed in human cancers of various types and implicated in oncogenic functions, the upstream signaling network leading to the regulation of Pontin that in turn affects transcription of downstream target genes has not been extensively studied. Here, we identify Pontin is methylated by G9a/GLP methyltransferases in hypoxic condition and potentiates HIF-1α-mediated activation by increasing the recruitment of p300 coactivator to a subset of HIF-1α target promoters. Intriguingly, Pontin methylation results in the increased invasive and migratory properties by activating downstream target gene, Ets1. In contrast, inhibition of Pontin methylation results in the suppression of tumorigenic and metastatic properties. Together, our data provide new approaches by targeting Pontin methylation and its downstream targets for the development of therapeutic agents for human cancers.


Assuntos
Proteínas de Transporte/metabolismo , Montagem e Desmontagem da Cromatina , DNA Helicases/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , ATPases Associadas a Diversas Atividades Celulares , Hipóxia Celular , Linhagem Celular Tumoral , Cromatina/genética , Epigenômica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metilação , Metiltransferases/metabolismo , Proteínas de Neoplasias/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA