Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(12): 2593-2609.e18, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37209683

RESUMO

Here, we describe an approach to correct the genetic defect in fragile X syndrome (FXS) via recruitment of endogenous repair mechanisms. A leading cause of autism spectrum disorders, FXS results from epigenetic silencing of FMR1 due to a congenital trinucleotide (CGG) repeat expansion. By investigating conditions favorable to FMR1 reactivation, we find MEK and BRAF inhibitors that induce a strong repeat contraction and full FMR1 reactivation in cellular models. We trace the mechanism to DNA demethylation and site-specific R-loops, which are necessary and sufficient for repeat contraction. A positive feedback cycle comprising demethylation, de novo FMR1 transcription, and R-loop formation results in the recruitment of endogenous DNA repair mechanisms that then drive excision of the long CGG repeat. Repeat contraction is specific to FMR1 and restores the production of FMRP protein. Our study therefore identifies a potential method of treating FXS in the future.


Assuntos
Síndrome do Cromossomo X Frágil , Expansão das Repetições de Trinucleotídeos , Humanos , Estruturas R-Loop , Metilação de DNA , Síndrome do Cromossomo X Frágil/genética , Epigênese Genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
2.
Cell ; 184(25): 6157-6173.e24, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34856126

RESUMO

Chromosome loops shift dynamically during development, homeostasis, and disease. CCCTC-binding factor (CTCF) is known to anchor loops and construct 3D genomes, but how anchor sites are selected is not yet understood. Here, we unveil Jpx RNA as a determinant of anchor selectivity. Jpx RNA targets thousands of genomic sites, preferentially binding promoters of active genes. Depleting Jpx RNA causes ectopic CTCF binding, massive shifts in chromosome looping, and downregulation of >700 Jpx target genes. Without Jpx, thousands of lost loops are replaced by de novo loops anchored by ectopic CTCF sites. Although Jpx controls CTCF binding on a genome-wide basis, it acts selectively at the subset of developmentally sensitive CTCF sites. Specifically, Jpx targets low-affinity CTCF motifs and displaces CTCF protein through competitive inhibition. We conclude that Jpx acts as a CTCF release factor and shapes the 3D genome by regulating anchor site usage.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromossomos/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Células-Tronco Embrionárias , Camundongos , Ligação Proteica
3.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36596869

RESUMO

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Assuntos
RNA Longo não Codificante , RNA Longo não Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Sequências Reguladoras de Ácido Nucleico , RNA Polimerase II/genética
4.
Cell ; 174(2): 406-421.e25, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-29887375

RESUMO

Mammalian chromosomes are partitioned into A/B compartments and topologically associated domains (TADs). The inactive X (Xi) chromosome, however, adopts a distinct conformation without evident compartments or TADs. Here, through exploration of an architectural protein, structural-maintenance-of-chromosomes hinge domain containing 1 (SMCHD1), we probe how the Xi is reconfigured during X chromosome inactivation. A/B compartments are first fused into "S1" and "S2" compartments, coinciding with Xist spreading into gene-rich domains. SMCHD1 then binds S1/S2 compartments and merges them to create a compartment-less architecture. Contrary to current views, TADs remain on the Xi but in an attenuated state. Ablating SMCHD1 results in a persistent S1/S2 organization and strengthening of TADs. Furthermore, loss of SMCHD1 causes regional defects in Xist spreading and erosion of heterochromatic silencing. We present a stepwise model for Xi folding, where SMCHD1 attenuates a hidden layer of Xi architecture to facilitate Xist spreading.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/química , Inativação do Cromossomo X , Alelos , Animais , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Cromossomos de Mamíferos/metabolismo , Metilação de DNA , Feminino , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Análise de Componente Principal , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Cell ; 170(1): 86-101.e16, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666128

RESUMO

Through an integration of genomic and proteomic approaches to advance understanding of long noncoding RNAs, we investigate the function of the telomeric transcript, TERRA. By identifying thousands of TERRA target sites in the mouse genome, we demonstrate that TERRA can bind both in cis to telomeres and in trans to genic targets. We then define a large network of interacting proteins, including epigenetic factors, telomeric proteins, and the RNA helicase, ATRX. TERRA and ATRX share hundreds of target genes and are functionally antagonistic at these loci: whereas TERRA activates, ATRX represses gene expression. At telomeres, TERRA competes with telomeric DNA for ATRX binding, suppresses ATRX localization, and ensures telomeric stability. Depleting TERRA increases telomerase activity and induces telomeric pathologies, including formation of telomere-induced DNA damage foci and loss or duplication of telomeric sequences. We conclude that TERRA functions as an epigenomic modulator in trans and as an essential regulator of telomeres in cis.


Assuntos
DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , RNA Longo não Codificante/metabolismo , Telômero/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Camundongos , Motivos de Nucleotídeos , Células-Tronco/metabolismo , Telomerase/metabolismo , Proteína Nuclear Ligada ao X
6.
Mol Cell ; 84(8): 1442-1459.e7, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38458200

RESUMO

In mammals, dosage compensation involves two parallel processes: (1) X inactivation, which equalizes X chromosome dosage between males and females, and (2) X hyperactivation, which upregulates the active X for X-autosome balance. The field currently favors models whereby dosage compensation initiates "de novo" during mouse development. Here, we develop "So-Smart-seq" to revisit the question and interrogate a comprehensive transcriptome including noncoding genes and repeats in mice. Intriguingly, de novo silencing pertains only to a subset of Xp genes. Evolutionarily older genes and repetitive elements demonstrate constitutive Xp silencing, adopt distinct signatures, and do not require Xist to initiate silencing. We trace Xp silencing backward in developmental time to meiotic sex chromosome inactivation in the male germ line and observe that Xm hyperactivation is timed to Xp silencing on a gene-by-gene basis. Thus, during the gamete-to-embryo transition, older Xp genes are transmitted in a "pre-inactivated" state. These findings have implications for the evolution of imprinting.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Feminino , Camundongos , Masculino , Animais , Inativação do Cromossomo X/genética , Impressão Genômica , Células Germinativas , Epigênese Genética , Embrião de Mamíferos , RNA Longo não Codificante/genética , Cromossomo X/genética , Mamíferos/genética
7.
Mol Cell ; 84(10): 1870-1885.e9, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759625

RESUMO

How Polycomb repressive complex 2 (PRC2) is regulated by RNA remains an unsolved problem. Although PRC2 binds G-tracts with the potential to form RNA G-quadruplexes (rG4s), whether rG4s fold extensively in vivo and whether PRC2 binds folded or unfolded rG4 are unknown. Using the X-inactivation model in mouse embryonic stem cells, here we identify multiple folded rG4s in Xist RNA and demonstrate that PRC2 preferentially binds folded rG4s. High-affinity rG4 binding inhibits PRC2's histone methyltransferase activity, and stabilizing rG4 in vivo antagonizes H3 at lysine 27 (H3K27me3) enrichment on the inactive X chromosome. Surprisingly, mutagenizing the rG4 does not affect PRC2 recruitment but promotes its release and catalytic activation on chromatin. H3K27me3 marks are misplaced, however, and gene silencing is compromised. Xist-PRC2 complexes become entrapped in the S1 chromosome compartment, precluding the required translocation into the S2 compartment. Thus, Xist rG4 folding controls PRC2 activity, H3K27me3 enrichment, and the stepwise regulation of chromosome-wide gene silencing.


Assuntos
Quadruplex G , Histonas , Complexo Repressor Polycomb 2 , RNA Longo não Codificante , Inativação do Cromossomo X , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Complexo Repressor Polycomb 2/metabolismo , Complexo Repressor Polycomb 2/genética , Histonas/metabolismo , Histonas/genética , Células-Tronco Embrionárias Murinas/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Inativação Gênica , Dobramento de RNA , Ligação Proteica
8.
Cell ; 167(7): 1788-1802.e13, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984727

RESUMO

More than 98% of the mammalian genome is noncoding, and interspersed transposable elements account for ∼50% of noncoding space. Here, we demonstrate that a specific interaction between the polycomb protein EZH2 and RNA made from B2 SINE retrotransposons controls stress-responsive genes in mouse cells. In the heat-shock model, B2 RNA binds stress genes and suppresses their transcription. Upon stress, EZH2 is recruited and triggers cleavage of B2 RNA. B2 degradation in turn upregulates stress genes. Evidence indicates that B2 RNA operates as a "speed bump" against advancement of RNA polymerase II, and temperature stress releases the brakes on transcriptional elongation. These data attribute a new function to EZH2 that is independent of its histone methyltransferase activity and reconcile how EZH2 can be associated with both gene repression and activation. Our study reveals that EZH2 and B2 together control activation of a large network of genes involved in thermal stress.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação da Expressão Gênica , Resposta ao Choque Térmico , RNA não Traduzido/metabolismo , Retroelementos , Animais , Células-Tronco Embrionárias/metabolismo , Camundongos , Células NIH 3T3 , RNA Polimerase II/metabolismo , Transcrição Gênica
9.
Cell ; 159(4): 869-83, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25417162

RESUMO

X chromosome inactivation (XCI) depends on the long noncoding RNA Xist and its recruitment of Polycomb Repressive Complex 2 (PRC2). PRC2 is also targeted to other sites throughout the genome to effect transcriptional repression. Using XCI as a model, we apply an unbiased proteomics approach to isolate Xist and PRC2 regulators and identified ATRX. ATRX unexpectedly functions as a high-affinity RNA-binding protein that directly interacts with RepA/Xist RNA to promote loading of PRC2 in vivo. Without ATRX, PRC2 cannot load onto Xist RNA nor spread in cis along the X chromosome. Moreover, epigenomic profiling reveals that genome-wide targeting of PRC2 depends on ATRX, as loss of ATRX leads to spatial redistribution of PRC2 and derepression of Polycomb responsive genes. Thus, ATRX is a required specificity determinant for PRC2 targeting and function.


Assuntos
DNA Helicases/metabolismo , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Animais , DNA Helicases/isolamento & purificação , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Proteínas Nucleares/isolamento & purificação , Proteína Nuclear Ligada ao X
10.
Mol Cell ; 81(9): 1970-1987.e9, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33725485

RESUMO

Depletion of architectural factors globally alters chromatin structure but only modestly affects gene expression. We revisit the structure-function relationship using the inactive X chromosome (Xi) as a model. We investigate cohesin imbalances by forcing its depletion or retention using degron-tagged RAD21 (cohesin subunit) or WAPL (cohesin release factor). Cohesin loss disrupts the Xi superstructure, unveiling superloops between escapee genes with minimal effect on gene repression. By contrast, forced cohesin retention markedly affects Xi superstructure, compromises spreading of Xist RNA-Polycomb complexes, and attenuates Xi silencing. Effects are greatest at distal chromosomal ends, where looping contacts with the Xist locus are weakened. Surprisingly, cohesin loss creates an Xi superloop, and cohesin retention creates Xi megadomains on the active X chromosome. Across the genome, a proper cohesin balance protects against aberrant inter-chromosomal interactions and tempers Polycomb-mediated repression. We conclude that a balance of cohesin eviction and retention regulates X inactivation and inter-chromosomal interactions across the genome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Proteínas do Grupo Polycomb/metabolismo , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Cromossomo X , Animais , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Camundongos , Conformação de Ácido Nucleico , Proteínas do Grupo Polycomb/genética , Conformação Proteica , Proteínas/genética , Proteínas/metabolismo , RNA Longo não Codificante/genética , Relação Estrutura-Atividade , Coesinas
11.
Genes Dev ; 35(13-14): 1035-1054, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34168040

RESUMO

G9a is a histone methyltransferase responsible for the dimethylation of histone H3 at lysine 9 (H3K9me2). G9a plays key roles in transcriptional silencing of developmentally regulated genes, but its role in X-chromosome inactivation (XCI) has been under debate. Here, we uncover a female-specific function of G9a and demonstrate that deleting G9a has a disproportionate impact on the X chromosome relative to the rest of the genome. G9a deficiency causes a failure of XCI and female-specific hypersensitivity to drug inhibition of H3K9me2. We show that G9a interacts with Tsix and Xist RNAs, and that competitive inhibition of the G9a-RNA interaction recapitulates the XCI defect. During XCI, Xist recruits G9a to silence X-linked genes on the future inactive X. In parallel on the future Xa, Tsix recruits G9a to silence Xist in cis Thus, RNA tethers G9a for allele-specific targeting of the H3K9me2 modification and the G9a-RNA interaction is essential for XCI.


Assuntos
Cromossomos Humanos X , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Metiltransferases , RNA Longo não Codificante , Feminino , Histonas/metabolismo , Humanos , Metiltransferases/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética
12.
Cell ; 152(6): 1308-23, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23498939

RESUMO

X chromosome inactivation and genomic imprinting are classic epigenetic processes that cause disease when not appropriately regulated in mammals. Whereas X chromosome inactivation evolved to solve the problem of gene dosage, the purpose of genomic imprinting remains controversial. Nevertheless, the two phenomena are united by allelic control of large gene clusters, such that only one copy of a gene is expressed in every cell. Allelic regulation poses significant challenges because it requires coordinated long-range control in cis and stable propagation over time. Long noncoding RNAs have emerged as a common theme, and their contributions to diseases of imprinting and the X chromosome have become apparent. Here, we review recent advances in basic biology, the connections to disease, and preview potential therapeutic strategies for future development.


Assuntos
Doença/genética , Impressão Genômica , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X , Animais , Humanos
13.
Cell ; 153(7): 1537-51, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23791181

RESUMO

In mammals, dosage compensation between XX and XY individuals occurs through X chromosome inactivation (XCI). The noncoding Xist RNA is expressed and initiates XCI only when more than one X chromosome is present. Current models invoke a dependency on the X-to-autosome ratio (X:A), but molecular factors remain poorly defined. Here, we demonstrate that molecular titration between an X-encoded RNA and an autosomally encoded protein dictates Xist induction. In pre-XCI cells, CTCF protein represses Xist transcription. At the onset of XCI, Jpx RNA is upregulated, binds CTCF, and extricates CTCF from one Xist allele. We demonstrate that CTCF is an RNA-binding protein and is titrated away from the Xist promoter by Jpx RNA. Thus, Jpx activates Xist by evicting CTCF. The functional antagonism via molecular titration reveals a role for long noncoding RNA in epigenetic regulation.


Assuntos
RNA Longo não Codificante/metabolismo , Proteínas Repressoras/metabolismo , Regulação para Cima , Inativação do Cromossomo X , Animais , Fator de Ligação a CCCTC , Cromossomos de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Masculino , Camundongos , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Cromossomo X/metabolismo
14.
Cell ; 152(4): 727-42, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415223

RESUMO

X chromosome aneuploidies have long been associated with human cancers, but causality has not been established. In mammals, X chromosome inactivation (XCI) is triggered by Xist RNA to equalize gene expression between the sexes. Here we delete Xist in the blood compartment of mice and demonstrate that mutant females develop a highly aggressive myeloproliferative neoplasm and myelodysplastic syndrome (mixed MPN/MDS) with 100% penetrance. Significant disease components include primary myelofibrosis, leukemia, histiocytic sarcoma, and vasculitis. Xist-deficient hematopoietic stem cells (HSCs) show aberrant maturation and age-dependent loss. Reconstitution experiments indicate that MPN/MDS and myelofibrosis are of hematopoietic rather than stromal origin. We propose that Xist loss results in X reactivation and consequent genome-wide changes that lead to cancer, thereby causally linking the X chromosome to cancer in mice. Thus, Xist RNA not only is required to maintain XCI but also suppresses cancer in vivo.


Assuntos
Genes Supressores de Tumor , Síndromes Mielodisplásicas/genética , Transtornos Mieloproliferativos/genética , RNA Longo não Codificante/genética , Animais , Medula Óssea/fisiopatologia , Feminino , Genes Letais , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Mielofibrose Primária/genética , Esplenomegalia/metabolismo , Inativação do Cromossomo X
15.
Nature ; 604(7904): 160-166, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355011

RESUMO

Although more than 98% of the human genome is non-coding1, nearly all of the drugs on the market target one of about 700 disease-related proteins. The historical reluctance to invest in non-coding RNA stems partly from requirements for drug targets to adopt a single stable conformation2. Most RNAs can adopt several conformations of similar stabilities. RNA structures also remain challenging to determine3. Nonetheless, an increasing number of diseases are now being attributed to non-coding RNA4 and the ability to target them would vastly expand the chemical space for drug development. Here we devise a screening strategy and identify small molecules that bind the non-coding RNA prototype Xist5. The X1 compound has drug-like properties and binds specifically the RepA motif6 of Xist in vitro and in vivo. Small-angle X-ray scattering analysis reveals that RepA can adopt multiple conformations but favours one structure in solution. X1 binding reduces the conformational space of RepA, displaces cognate interacting protein factors (PRC2 and SPEN), suppresses histone H3K27 trimethylation, and blocks initiation of X-chromosome inactivation. X1 inhibits cell differentiation and growth in a female-specific manner. Thus, RNA can be systematically targeted by drug-like compounds that disrupt RNA structure and epigenetic function.


Assuntos
Cromossomos Humanos X , RNA Longo não Codificante , Inativação do Cromossomo X , Diferenciação Celular , Cromossomos Humanos X/genética , Feminino , Histonas/metabolismo , Humanos , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética
16.
Mol Cell ; 74(1): 101-117.e10, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30827740

RESUMO

During X-inactivation, Xist RNA spreads along an entire chromosome to establish silencing. However, the mechanism and functional RNA elements involved in spreading remain undefined. By performing a comprehensive endogenous Xist deletion screen, we identify Repeat B as crucial for spreading Xist and maintaining Polycomb repressive complexes 1 and 2 (PRC1/PRC2) along the inactive X (Xi). Unexpectedly, spreading of these three factors is inextricably linked. Deleting Repeat B or its direct binding partner, HNRNPK, compromises recruitment of PRC1 and PRC2. In turn, ablating PRC1 or PRC2 impairs Xist spreading. Therefore, Xist and Polycomb complexes require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading causes failure of de novo Xi silencing, with partial compensatory downregulation of the active X, and also disrupts topological Xi reconfiguration. Thus, Repeat B is a multifunctional element that integrates interdependent Xist/Polycomb spreading, silencing, and changes in chromosome architecture.


Assuntos
Fibroblastos/metabolismo , Deleção de Genes , Inativação Gênica , Células-Tronco Embrionárias Murinas/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Linhagem Celular Transformada , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ribonucleoproteínas Nucleares Heterogêneas Grupo K , Masculino , Camundongos , Motivos de Nucleotídeos , Complexo Repressor Polycomb 1/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Ligação Proteica , RNA Longo não Codificante/metabolismo , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Cromossomo X/metabolismo
17.
Proc Natl Acad Sci U S A ; 121(9): e2312757121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386709

RESUMO

MECP2, CDKL5, and FMR1 are three X-linked neurodevelopmental genes associated with Rett, CDKL5-, and fragile-X syndrome, respectively. These syndromes are characterized by distinct constellations of severe cognitive and neurobehavioral anomalies, reflecting the broad but unique expression patterns of each of the genes in the brain. As these disorders are not thought to be neurodegenerative and may be reversible, a major goal has been to restore expression of the functional proteins in the patient's brain. Strategies have included gene therapy, gene editing, and selective Xi-reactivation methodologies. However, tissue penetration and overall delivery to various regions of the brain remain challenging for each strategy. Thus, gaining insights into how much restoration would be required and what regions/cell types in the brain must be targeted for meaningful physiological improvement would be valuable. As a step toward addressing these questions, here we perform a meta-analysis of single-cell transcriptomics data from the human brain across multiple developmental stages, in various brain regions, and in multiple donors. We observe a substantial degree of expression variability for MECP2, CDKL5, and FMR1 not only across cell types but also between donors. The wide range of expression may help define a therapeutic window, with the low end delineating a minimum level required to restore physiological function and the high end informing toxicology margin. Finally, the inter-cellular and inter-individual variability enable identification of co-varying genes and will facilitate future identification of biomarkers.


Assuntos
Encéfalo , Síndromes Epilépticas , Espasmos Infantis , Humanos , Genes Ligados ao Cromossomo X , Terapia Genética , Proteínas Serina-Treonina Quinases/genética , Proteína do X Frágil da Deficiência Intelectual/genética
18.
Cell ; 146(1): 119-33, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729784

RESUMO

The long noncoding Xist RNA inactivates one X chromosome in the female mammal. Current models posit that Xist induces silencing as it spreads along X and recruits Polycomb complexes. However, the mechanisms for Xist loading and spreading are currently unknown. Here, we define the nucleation center for Xist RNA and show that YY1 docks Xist particles onto the X chromosome. YY1 is a "bivalent" protein, capable of binding both RNA and DNA through different sequence motifs. Xist's exclusive attachment to the inactive X is determined by an epigenetically regulated trio of YY1 sites as well as allelic origin. Specific YY1-to-RNA and YY1-to-DNA contacts are required to load Xist particles onto X. YY1 interacts with Xist RNA through Repeat C. We propose that YY1 acts as adaptor between regulatory RNA and chromatin targets.


Assuntos
RNA não Traduzido/metabolismo , Inativação do Cromossomo X , Cromossomo X/genética , Fator de Transcrição YY1/metabolismo , Animais , Feminino , Camundongos , Proteínas do Grupo Polycomb , RNA Longo não Codificante , RNA não Traduzido/química , Proteínas Repressoras/metabolismo , Transgenes
19.
Proc Natl Acad Sci U S A ; 120(4): e2213810120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669113

RESUMO

Reactivation of the inactive X chromosome is a hallmark epigenetic event during reprogramming of mouse female somatic cells to induced pluripotent stem cells (iPSCs). This involves global structural remodeling from a condensed, heterochromatic into an open, euchromatic state, thereby changing a transcriptionally inactive into an active chromosome. Despite recent advances, very little is currently known about the molecular players mediating this process and how this relates to iPSC-reprogramming in general. To gain more insight, here we perform a RNAi-based knockdown screen during iPSC-reprogramming of mouse fibroblasts. We discover factors important for X chromosome reactivation (XCR) and iPSC-reprogramming. Among those, we identify the cohesin complex member SMC1a as a key molecule with a specific function in XCR, as its knockdown greatly affects XCR without interfering with iPSC-reprogramming. Using super-resolution microscopy, we find SMC1a to be preferentially enriched on the active compared with the inactive X chromosome and that SMC1a is critical for the decompacted state of the active X. Specifically, depletion of SMC1a leads to contraction of the active X both in differentiated and in pluripotent cells, where it normally is in its most open state. In summary, we reveal cohesin as a key factor for remodeling of the X chromosome from an inactive to an active structure and that this is a critical step for XCR during iPSC-reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Animais , Camundongos , Reprogramação Celular , Inativação do Cromossomo X/genética , Cromossomo X/genética , Estruturas Cromossômicas , Coesinas
20.
Trends Genet ; 38(9): 920-943, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35248405

RESUMO

The human X-chromosome harbors only 4% of our genome but carries over 20% of genes associated with intellectual disability. Given that they inherit only one X-chromosome, males are more frequently affected by X-linked neurodevelopmental genetic disorders than females. However, despite inheriting two X-chromosomes, females can also be affected because X-chromosome inactivation enables only one of two X-chromosomes to be expressed per cell. For Rett syndrome and similar X-linked disorders affecting females, disease-specific treatments have remained elusive. However, a cure may be found within their own cells because every sick cell carries a healthy copy of the affected gene on the inactive X (Xi). Therefore, selective Xi reactivation may be a viable approach that would address the root cause of various X-linked disorders. Here, we discuss Rett syndrome and compare current approaches in the pharmaceutical pipeline to restore MECP2 function. We then focus on Xi reactivation and review available methods, lessons learned, and future directions.


Assuntos
Deficiência Intelectual , Síndrome de Rett , Cromossomos Humanos X/genética , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Síndrome de Rett/genética , Inativação do Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA