Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Molecules ; 29(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930994

RESUMO

The tetradentate ligand, merging a carbazole unit with high triplet energy and dimethoxy bipyridine, renowned for its exceptional quantum efficiency in coordination with metals like Pt, is expected to demonstrate remarkable luminescent properties. However, instances of tetradentate ligands such as bipyridine-based pyridylcarbazole derivatives remain exceptionally scarce in the current literature. In this study, we developed a tetradentate ligand based on carbazole and 2,3'-bipyridine and successfully complexed it with Pt(II) ions. This novel compound (1) serves as a sky-blue phosphorescent material for use in light-emitting diodes. Based on single-crystal X-ray analysis, compound 1 has a distorted square-planar geometry with a 5/6/6 backbone around the Pt(II) core. Bright sky-blue emissions were observed at 488 and 516 nm with photoluminescent quantum yields of 34% and a luminescent lifetime of 2.6 µs. TD-DFT calculations for 1 revealed that the electronic transition was mostly attributed to the ligand-centered (LC) charge transfer transition with a small contribution from the metal-to-ligand charge transfer transition (MLCT, ~14%). A phosphorescent organic light-emitting device was successfully fabricated using this material as a dopant, along with 3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (mCBP) and 9-(3'-carbazol-9-yl-5-cyano-biphenyl-3-yl)-9H-carbazole-3-carbonitrile (CNmCBPCN) as mixed hosts. A maximum quantum efficiency of 5.2% and a current efficiency of 15.5 cd/A were obtained at a doping level of 5%.

2.
Inorg Chem ; 62(25): 10003-10013, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37311712

RESUMO

In this study, we found that the electronic effects of the functional groups on aromatic units attached to o-carboranyl species can enhance the efficiency of intramolecular charge transfer (ICT)-based radiative decay processes. Six o-carboranyl-based luminophores having attached functionalized biphenyl groups with CF3, F, H, CH3, C(CH3)3, and OCH3 substituents were prepared and fully characterized by multinuclear magnetic resonance spectroscopy. In addition, their molecular structures were determined by single-crystal X-ray diffractometry, which revealed that the distortion of the biphenyl rings and the geometries around the o-carborane cages were similar. All compounds exhibited ICT-based emissions in the rigid state (solution at 77 K and film). Intriguingly, the quantum efficiencies (Φem) of five compounds (that of the group with CF3 could not be measured because of its extremely weak emissions) in the film state increased gradually as the electron-donating power of the terminal functional group modifying the biphenyl moiety increased. Furthermore, the nonradiative decay constants (knr) for the group with OCH3 were estimated to be one-tenth of those for the group with F, whereas the radiative decay constants (kr) for the five compounds were similar. The dipole moments (µ) calculated for the optimized first excited state (S1) structures gradually increased, from that of the group with CF3 to that of the group with OCH3, implying that the inhomogeneity of the molecular charge distribution was enhanced by electron donation. The electron-rich environment formed as a result of electron donation led to efficient charge transfer to the excited state. Both experimental and theoretical findings revealed that the electronic environment of the aromatic moiety in o-carboranyl luminophores can be controlled to accelerate or interrupt the ICT process in the radiative decay of excited states.

3.
Bioorg Chem ; 128: 106044, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35917749

RESUMO

Novel bipyridine-based heterocyclic building block, 3,10-dichloro-benzo[f][1,10]phenanthroline and its Ruthenium(II) complex have been synthesized and fully characterized. The synthesized Ru(II)-complex is highly luminescent displaying emission at 590 nm with quantum yield of ∼0.8 in methanol. Ru(II) complex showed photocytotoxicity upon 400 nm blue light irradiation. Mechanistic study revealed that photoactivated Ru(II) complex generates reactive radical species which can damage the protein inside the cells and induce cell death even with short irradiation time.


Assuntos
Rutênio , Luz , Fenantrolinas , Rutênio/farmacologia
4.
Molecules ; 27(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36235102

RESUMO

The efficiency of intramolecular charge transfer (ICT)-based emission on π-aromatic-group-appended closo-ortho-carboranyl luminophores is known to be affected by structural fluctuations and molecular geometry, but investigation of this relationship has been in progress to date. In this study, four naphthyl-based bis-o-carboranyl compounds, in which hydrogen (15CH and 26CH) or trimethysilyl groups (15CS and 26CS) were appended at the o-carborane cage, were synthesized and fully characterized. All the compounds barely displayed an emissive trace in solution at 298 K; however, 15CH and 26CH distinctly exhibited a dual emissive pattern in rigid states (in solution at 77 K and in films), attributed to locally excited (LE) and ICT-based emission, while 15CS and 26CS showed strong ICT-based greenish emission. Intriguingly, the molecular structures of the four compounds, analyzed by single X-ray crystallography, showed that the C-C bond axis of the o-carborane cage in the trimethysilyl group-appended compounds 15CS and 26CS were more orthogonal to the plane of the appended naphthyl group than those in 15CH and 26CH. These features indicate that 15CS and 26CS present an efficient ICT transition based on strong exo-π-interaction, resulting in a higher quantum efficiency (Φem) for ICT-based radiative decay than those of 15CH and 26CH. Moreover, the 26CS structure revealed most orthogonal geometry, resulting in the highest Φem and lowest knr values for the ICT-based emission. Consequently, all the findings verified that efficient ICT-based radiative decay of aromatic group-appended o-carboranyl luminophores could be achieved by the formation of a specific geometry between the o-carborane cage and the aromatic plane.

5.
Molecules ; 26(6)2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33801078

RESUMO

The photophysical properties of closo-ortho-carboranyl-based donor-acceptor dyads are known to be affected by the electronic environment of the carborane cage but the influence of the electronic environment of the donor moiety remains unclear. Herein, four 9-phenyl-9H-carbazole-based closo-ortho-carboranyl compounds (1F, 2P, 3M, and 4T), in which an o-carborane cage was appended at the C3-position of a 9-phenyl-9H-carbazole moiety bearing various functional groups, were synthesized and fully characterized using multinuclear nuclear magnetic resonance spectroscopy and elemental analysis. Furthermore, the solid-state molecular structures of 1F and 4T were determined by X-ray diffraction crystallography. For all the compounds, the lowest-energy absorption band exhibited a tail extending to 350 nm, attributable to the spin-allowed π-π* transition of the 9-phenyl-9H-carbazole moiety and weak intramolecular charge transfer (ICT) between the o-carborane and the carbazole group. These compounds showed intense yellowish emission (λem = ~540 nm) in rigid states (in tetrahydrofuran (THF) at 77 K and in films), whereas considerably weak emission was observed in THF at 298 K. Theoretical calculations on the first excited states (S1) of the compounds suggested that the strong emission bands can be assigned to the ICT transition involving the o-carborane. Furthermore, photoluminescence experiments in THF‒water mixtures demonstrated that aggregation-induced emission was responsible for the emission in rigid states. Intriguingly, the quantum yields and radiative decay constants in the film state were gradually enhanced with the increasing electron-donating ability of the substituent on the 9-phenyl group (‒F for 1F < ‒H for 2P < ‒CH3 for 3M < ‒C(CH3)3 for 4T). These features indicate that the ICT-based radiative decay process in rigid states is affected by the electronic environment of the 9-phenyl-9H-carbazole group. Consequently, the efficient ICT-based radiative decay of o-carboranyl compounds can be achieved by appending the o-carborane cage with electron-rich aromatic systems.

6.
Chemistry ; 26(2): 548-557, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31657858

RESUMO

9,9'-Spirobifluorene-based closo-o-carboranyl (SFC1 and SFC2) compounds and their nido-derivatives (nido-SFC1 and nido-SFC2) were prepared and characterized. The two closo-compounds displayed major absorption bands assignable to π-π* transitions involving the spirobifluorene group, as well as weak intramolecular charge-transfer (ICT) transitions between the o-carboranes and their spirobifluorene moieties. The nido-compounds exhibited slightly blueshifted absorption bands resulting from the absence of the ICT transitions corresponding to the o-carborane moieties due to the anionic character of the nido-o-carboranes. While SFC1 exhibited only high-energy emissions in THF at 298 K (only from locally excited (LE) states assignable to π-π* transitions on the spirobifluorene group), remarkable emissions in the low-energy region were observed in the rigid state such as in THF at 77 K and in the film state. SFC2 displayed intense emissions in the low-energy region in all states. The fact that neither of the nido-derivatives of SFC1 and SFC2 exhibited low-energy emissions and the TD-DFT calculation results of each closo-compound clearly verified that the low-energy emission was based on ICT-based radiative decay. The conformational barriers from each relative energy calculation upon changing the dihedral angles around the o-carborane cages for both compounds confirmed that the rotation of the o-carborane cages and terminal phenyl rings for SFC1 is freer than that for SFC2.

7.
Molecules ; 26(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374726

RESUMO

A novel class of quinolinol-based dimeric indium complexes (1-6) was synthesized and characterized using 1H and 13C(1H) NMR spectroscopy and elemental analysis. Compounds 1-6 exhibited typical low-energy absorption bands assignable to quinolinol-centered π-π* charge transfer (CT) transition. The emission spectra of 1-6 exhibited slight bathochromic shifts with increasing solvent polarity (p-xylene < tetrahydrofuran (THF) < dichloromethane (DCM)). The emission bands also showed a gradual redshift, with an increase in the electron-donating effect of substituents at the C5 position of the quinoline groups. The absolute emission quantum yields (ΦPL) of compounds 1 (11.2% in THF and 17.2% in film) and 4 (17.8% in THF and 36.2% in film) with methyl substituents at the C5 position of the quinoline moieties were higher than those of the indium complexes with other substituents.


Assuntos
Índio/química , Processos Fotoquímicos , Teoria Quântica , Ácido Quinolínico/síntese química , Solventes/química , Modelos Moleculares , Estrutura Molecular
8.
Molecules ; 25(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455846

RESUMO

Closo-o-carboranyl compounds bearing the ortho-type perfectly distorted or planar terphenyl rings (closo-DT and closo-PT, respectively) and their nido-derivatives (nido-DT and nido-PT, respectively) were synthesized and fully characterized using multinuclear NMR spectroscopy and elemental analysis. Although the emission spectra of both closo-compounds exhibited intriguing emission patterns in solution at 298 and 77 K, in the film state, closo-DT mainly exhibited a π-π* local excitation (LE)-based emission in the high-energy region, whereas closo-PT produced an intense emission in the low-energy region corresponding to an intramolecular charge transfer (ICT) transition. In particular, the positive solvatochromic effect of closo-PT and theoretical calculation results at the first excited (S1) optimized structure of both closo-compounds strongly suggest that these dual-emissive bands at the high- and low-energy can be assigned to each π-π* LE and ICT transition. Interestingly, both the nido-compounds, nido-DT and nido-PT, exhibited the only LE-based emission in solution at 298 K due to the anionic character of the nido-o-carborane cages, which cannot cause the ICT transitions. The specific emissive features of nido-compounds indicate that the emissive color of closo-PT in solution at 298 K is completely different from that of nido-PT. As a result, the deboronation of closo-PT upon exposure to increasing concentrations of fluoride anion exhibits a dramatic ratiometric color change from orange to deep blue via turn-off of the ICT-based emission. Consequently, the color change response of the luminescence by the alternation of the intrinsic electronic transitions via deboronation as well as the structural feature of terphenyl rings indicates the potential of the developed closo-o-carboranyl compounds that exhibit the intense ICT-based emission, as naked-eye-detectable chemodosimeters for fluoride ion sensing.


Assuntos
Ácidos Borônicos/química , Fluoretos/química , Compostos de Flúor/química , Compostos de Terfenil/química , Boranos/química , Cristalografia por Raios X , Fluoretos/isolamento & purificação , Compostos de Flúor/isolamento & purificação , Modelos Moleculares , Estrutura Molecular
9.
J Org Chem ; 84(7): 3843-3852, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30675790

RESUMO

Pyrazinoindole-based Lewis-acid/base assemblies are prepared through the use of regioselective formal [3 + 3] cycloaddition reactions, and their intriguing photophysical properties are described. The assemblies exhibit strong emissions in THF solution, which are attributed to through-space intramolecular charge-transfer (ICT) transitions between the branched Lewis-acid/base moieties. Furthermore, these show ratiometric color-change responses in PL titration experiments, which give rise to new colors through turn-on emissions ascribable to ICT transitions that alternate between the pyrazinoindole units and each triarylboryl or amino moiety, a consequence of the binding of the fluoride or acid. Pieces of filter paper covered by these assemblies exhibited blue-shifted color changes when immersed in aqueous acidic solutions, suggesting that these are promising candidate indicators that detect acid through emissive color. Computational data for these assemblies and their corresponding adducts verify the existence of ICT transitions that alternate through fluoride or acid binding.

10.
Inorg Chem ; 58(18): 12358-12364, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483629

RESUMO

Novel carbazole-conjugated salen-In complexes (Cz1 and Cz2) were prepared and fully characterized by 1H and 13C NMR spectroscopy, elemental analysis, and high-resolution mass spectrometry. The major low-energy absorption bands at λabs = 342 nm for Cz1 and 391 nm for Cz2, respectively, are assigned to typical intramolecular charge transfer (ICT) transitions between the carbazole unit and the salen-In center. The solvatochromism effects in various organic solvents and their large Stokes shift distinctly supported the ICT nature. The photoluminescent spectra of Cz1 and Cz2 showed broad emission bands are centered at 459 nm (blue, λex = 354 nm) and 507 nm (green, λex = 396 nm) in THF, respectively, which are typical feature of CT transitions. In particular, Cz1 showed 8-fold enhanced quantum efficiency relative to that of Cz2, at least 10-fold higher than those of the carbazole-free salen-In complexes. Such enhanced luminescence efficiency of Cz1 originated from efficient radiative decay based on the ICT transition between the salen-In moieties and carbazole parts, as well as its structural rigidity in conversion process between the ground (S0) and excited (S1) states. In other words, Cz2 exhibited low quantum yield due to its structural fluctuation, which is free rotation of both the appended carbazole moieties and bridged phenylene rings in conversion between the S0 and S1 structures. Theoretical calculations clearly supported these intriguing results. In addition, these salen-In complexes exhibited high thermal stability (Td5 = 367 °C for Cz1 and 406 °C for Cz2) and electrochemical stability.

11.
Inorg Chem ; 58(4): 2454-2462, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30694658

RESUMO

A series of triphenylamine (TPA)-containing salen-Al assembly dyads, [salen(3- tBu-5-R)2Al(OC6H4- p-N(C6H5)2)] [salen = N, N'-bis(salicylidene)ethylenediamine; R = H (D1), tBu (D2), Ph (D3), OMe (D4), and NMe2 (D5)], were prepared in good yield (50-80%) and fully characterized by NMR spectroscopy and elemental analysis. Both the UV/vis absorption and photoluminescence (PL) spectra of D1-D4, except for D5, in a tetrahydrofuran solution exhibited dual patterns, which are assignable to the salen-Al-centered π-π* transition (low-energy region) and the TPA-centered π-π* transition (high-energy region). In particular, the emission spectra of the dyads displayed interesting dual-emissive patterns via a significant intramolecular energy transfer (IET) process between the salen-Al moiety and TPA group. Notably, this IET process was systematically tuned by varying the substituents and dominantly observed in the rigid state. More interestingly, compared to the salen-Al complexes (A1-A4) without the TPA group, D1-D4 exhibited enhanced quantum efficiencies. Time-dependent density functional theory calculations on the S1-optimized structures of D1-D5 further supported these experimental results by indicating the existence of independent transition states between the salen-Al moiety and TPA group in the assembly dyads. The present study reports the first example of salen-Al complexes bearing electron-rich TPA moieties.

12.
Inorg Chem ; 58(12): 8056-8063, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31120743

RESUMO

An approach to the design of a series of quinolinol-based indium complexes that can exhibit different optical properties is proposed. Mono-incorporated (Inq1 and InMeq1), bis-incorporated (InMeq2), and tris-incorporated (Inq3 and InMeq3) indium quinolinate complexes have been prepared. These complexes have also been characterized by X-ray crystallography. The photophysical properties of these complexes have also been examined by a combination of experimental and theoretical techniques. The indium complexes with a single quinolinol ligand (Inq1 and InMeq1) showed higher quantum efficiency than those with two or three quinolinate ligands; in particular, InMeq1 exhibited the highest quantum yield [ΦPL = 59% in poly(methyl methacrylate) film]. The insights into the nature of these findings were obtained by the sequential synthesis of the quinolinol-based indium luminophores and a detailed investigation of their structural stability.

13.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731632

RESUMO

9,9'-Spirobifluorene-based o-carboranyl compounds C1 and C2 were prepared and fully characterized by multinuclear nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The solid-state structure of C1 was also determined by single-crystal X-ray diffractometry. The two carboranyl compounds display major absorption bands that are assigned to π-π* transitions involving their spirobifluorene groups, as well as weak intramolecular charge-transfer (ICT) transitions between the o-carboranes and their spirobifluorene groups. While C1 only exhibited high-energy emissions (λem = ca. 350 nm) in THF at 298 K due to locally excited (LE) states assignable to π-π* transitions involving the spirobifluorene group alone, a remarkable emission in the low-energy region was observed in the rigid state, such as in THF at 77 K or the film state. Furthermore, C2 displays intense dual emissive patterns in both high- and low-energy regions in all states. Electronic transitions that were calculated by time-dependent-DFT (TD-DFT) for each compound based on ground (S0) and first-excited (S1) state optimized structures clearly verify that the low-energy emissions are due to ICT-based radiative decays. Calculated energy barriers that are based on the relative energies associated with changes in the dihedral angle around the o-carborane cages in C1 and C2 clearly reveal that the o-carborane cage in C1 rotates more freely than that in C2. All of the molecular features indicate that ICT-based radiative decay is only available to the rigid state in the absence of structural fluctuations, in particular the free-rotation of the o-carborane cage.


Assuntos
Boranos/química , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Termodinâmica
14.
Molecules ; 24(1)2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30621119

RESUMO

Herein, we investigated the effect of ring planarity by fully characterizing four pyridine-based o-carboranyl compounds. o-Carborane was introduced to the C4 position of the pyridine rings of 2-phenylpyridine and 2-(benzo[b]thiophen-2-yl)pyridine (CB1 and CB2, respectively), and the compounds were subsequently borylated to obtain the corresponding CN-chelated compounds CB1B and CB2B. Single-crystal X-ray diffraction analysis of the molecular structures of CB2 and CB2B confirmed that o-carborane is appended to the aryl moiety. In photoluminescence experiments, CB2, but not CB1, showed an intense emission, assignable to intramolecular charge transfer (ICT) transition between the aryl and o-carborane moieties, in both solution and film states. On the other hand, in both solution and film states, CB1B and CB2B demonstrated a strong emission, originating from π-π * transition in the aryl groups, that tailed off to 650 nm owing to the ICT transition. All intramolecular electronic transitions in these o-carboranyl compounds were verified by theoretical calculations. These results distinctly suggest that the planarity of the aryl groups have a decisive effect on the efficiency of the radiative decay due to the ICT transition.


Assuntos
Boranos/química , Piridinas/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Teoria Quântica
15.
Inorg Chem ; 57(18): 11696-11703, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30160112

RESUMO

We report a novel example of supramolecular cages containing a Lewis acidic trigonal boron center. Self-assembly of the tris(pyridyl)borane donor 1 with diruthenium (2) or platinum (3), as an electron acceptor, furnished boron-containing trigonal prismatic supramolecular cages 5 and 6, which were characterized by 1H NMR and electrospray ionization time-of-flight mass spectroscopy and X-ray crystallography. The molecular structure of cage 5 was confirmed as a trigonal prismatic cage with an inner dimension of about 400 Å3. The fluoride binding properties of borane ligand 1 and Pt cage 6 were studied. UV/vis absorption titration studies demonstrated that the boron center of cage 6 undergoes strong binding interaction with the fluoride ion, with an estimated binding constant of 1.3 × 1010 M-2 in acetone based on the 1:2 binding isotherm. The binding was also confirmed by 1H NMR titration. Photoluminescence titration studies showed that cage 6 emitted borane-centered fluorescence (τ = 2.21 ns), which was gradually quenched upon addition of fluoride. When excess fluoride was added to a solution of 6, however, dissociation of the pyridyl ligand from the Pt(II) center was observed.

16.
Inorg Chem ; 56(11): 6039-6043, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28537404

RESUMO

Novel salen-Al/triarylborane dyad complexes were prepared and characterized with their corresponding mononuclear compounds. The UV-vis and photoluminescence experiments for dyads exhibited photoinduced energy transfer from borane to the salen-Al moiety in an intramolecular manner. Theoretical calculation and fluoride titration results further supported these intramolecular energy-transfer features.

17.
Inorg Chem ; 56(5): 2621-2626, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28191848

RESUMO

The series of novel salen-based indium complexes (3-tBu-5-R-salen)In-Me (3-tBu-5-R-salen = N,N'-bis(2-oxy-3-tert-butyl-5-R-salicylidene)-1,2-diaminoethane, R = H (1), tBu (2), Br (3), Ph (4), OMe (5), NMe2 (6)) and [(3-tBu-5-NMe3-salen)In-Me](OTf)2 (7; OTf = CF3SO3-) have been synthesized and fully characterized by NMR spectroscopy and elemental analysis. All indium complexes 1-7 are highly stable in air and even aqueous solutions. The solid-state structures for 3-5, which were confirmed by single-crystal X-ray analysis, exhibit square-pyramidal geometries around the indium center. Both the UV/vis absorption and PL spectra of 1-7 exhibit significant intramolecular charge transfer (ICT) transitions based on the salen moieties with systematically bathochromic shifts, which depend on the introduction of various kinds of substituents. Consequently, the emission spectra of these complexes cover almost the entire visible region (λem = 455-622 nm).

18.
Inorg Chem ; 53(1): 128-38, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24328199

RESUMO

Heteroleptic (C(∧)N)2Ir(acac) (C(∧)N = 5-MeCBbtp (5a); 4-BuCBbtp (5b); 5-BuCBbtp (5c); 5-(R)CBbtp = 2-(2'-benzothienyl)-5-(2-R-ortho-carboran-1-yl)-pyridinato-C(2),N, R = Me and n-Bu; 4-BuCBbtp = 2-(2'-benzothienyl)-4-(2-n-Bu-ortho-carboran-1-yl)-pyridinato-C(2),N, acac = acetylacetonate) complexes supported by o-carborane substituted C(∧)N-chelating ligand were prepared, and the crystal structures of 5a and 5b were determined by X-ray diffraction. While 5a and 5c exhibit a deep red phosphorescence band centered at 644 nm, which is substantially red-shifted compared to that of unsubstituted (btp)2Ir(acac) (6) (λem = 612 nm), 5b is nonemissive in THF solution at room temperature. In contrast, all complexes are emissive at 77 K and in the solid state. Electrochemical and theoretical studies suggest that the carborane substitution leads to the lowering of both the HOMO and LUMO levels, but has higher impact on the LUMO stabilization than the HOMO, resulting in the reduction of the triplet excited state energy. In particular, the LUMO stabilization in the 4-substituted 5b is more contributed by carborane than that in the 5-substituted 5a. The solution-processed electroluminescent device incorporating 5a as an emitter displayed deep red phosphorescence (CIE coordinate: 0.693, 0.290) with moderate performance (max ηEQE = 3.8%) whereas the device incorporating 5b showed poor performance, as well as weak luminance.

19.
Inorg Chem ; 53(16): 8213-20, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25075636

RESUMO

We report formation of a new metallascorpionate ligand, [FeL3](3-) (IPtz), containing a Fe core and three 5-(2-hydroxyphenyl)-1H-tetrazole (LH2) ligands. It features two different binding sites, oxygen and nitrogen triangles, which consist of three oxygen or nitrogen donors from tetrazole. The binding affinities of the complex for three alkali metal ions were studied using UV spectrophotometry titrations. All three alkali metal ions show high affinities and binding constants (>3 × 10(6) M(-1)), based on the 1:1 binding isotherms to IPtz. The coordination modes of the alkali metals and IPtz in the solid were studied using X-ray crystallography; two different electron-donor sites show different coordination numbers for Li(+), Na(+), and K(+) ions. The oxygen triangles have the κ(2) coordination mode with Li(+) and κ(3) coordination mode with Na(+) and K(+) ions, whereas the nitrogen triangles show κ(3) coordination with K(+) only. The different binding affinities of IPtz in the solid were manipulated using multiple metal precursors. A Fe-K-Zn trimetallic complex was constructed by assembly of an IPtz ligand, K, and Zn precursors and characterized using X-ray crystallography. Oxygen donors are coordinated with the K ion via the κ(3) coordination mode, and nitrogen donors are coordinated with Zn metal by κ(3) coordination. The solid-state structure was confirmed to be a honeycomb coordination polymer with a one-dimensional infinite metallic array, i.e., -(K-K-Fe-Zn-Fe-K)n-.


Assuntos
Complexos de Coordenação/síntese química , Compostos Férricos/química , Metais Alcalinos/química , Tetrazóis/química , Complexos de Coordenação/química , Cristalografia por Raios X , Íons/química , Modelos Moleculares , Estrutura Molecular , Espectroscopia Fotoeletrônica
20.
Dalton Trans ; 53(24): 10120-10125, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38817194

RESUMO

Nickel monocarbonyl species with Ni(I) and Ni(0) have been synthesized and fully characterized by employing an acriPNP-Ph pincer ligand having a -C(Ph)2- bridge moiety to tether two aromatic rings. To see the effect of the bridge moiety, these complexes were structurally compared with the previously studied nickel complexes supported by PNP and acriPNP-Me ligands and methylation of the nickel carbonyl species was particularly investigated. Since a Ni(I)-CO species is known to be one of the key intermediates during the C-C coupling reaction to give an acetyl species, according to the paramagnetic mechanism of acetyl coenzyme A synthase (ACS), their reactivity toward MeI has been examined. Methylation of a nickel(I)-CO species reveals enhanced C-C coupling when both acriPNP-Me and acriPNP-Ph ligands were used. According to spin density analysis calculated by density functional theory, all Ni(I)-CO species reveal similar spin density at nickel and the carbon atom of CO. X-ray crystallographic data suggest that the corresponding selectivity may be related to the steric influence. For both (acriPNP-Ph)Ni-CO (2) and (acriPNP-Me)Ni-CO (2'), the nickel(I) site is sterically well protected, leading to selective interaction with a methyl radical to give a nickel acyl product. Steric influence was marginally observed when an anionic {(acriPNP-R)Ni-CO}- (R = Me or Ph) species reacted with MeI. The corresponding C-C coupled product was also observed from the methylation of nickel(0)-CO species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA