Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 349: 140817, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38040260

RESUMO

Metal-based anodes have been used for a long time in the electrochemical oxidation processes to remediate groundwater. However, the high cost of this technique as well as the release of potentially toxic metals (ex, lead), are major barriers being fully implemented. As an alternative of metal-based anodes, in recent years, carbon-based anodes have been paid attention due to their eco-friendliness and cost-effectiveness. This study evaluated the oxidation performance of carbon fiber (CF) anode in a flow-through system. The CF anode degraded 45-87% of the target pollutant (sulfanilamide), depending on the current intensity applied. However, no further degradation of sulfanilamide was observed after the cathode, indicating that sulfanilamide degradation occurred mainly at the anode. This study also determined the effect of electrolytes on electrochemical oxidation using chloride (Cl-), sulfate (SO42-), bicarbonate (CO3-), and synthetic groundwater. Cl- and SO42- electrolytes were converted electrochemically into active species, thereby enhancing sulfanilamide degradation, while the bicarbonate and groundwater electrolytes inhibited oxidation performance by scavenging hydroxyl radicals. A series of scavenger tests and characterization showed that the direct oxidation and hydroxyl radicals involved the sulfanilamide degradation. Especially, the production of hydroxyl radicals is more favorable in high currents than in low currents. That is, CF anode contributed to the degradation by direct oxidation of carbon-based electrodes and generation of hydroxyl radicals. In summary, this study highlights how a CF anode is capable of effectively degrading organic pollutants via anodic oxidation.


Assuntos
Bicarbonatos , Poluentes Químicos da Água , Sulfanilamida , Fibra de Carbono , Poluentes Químicos da Água/química , Oxirredução , Carbono , Eletrodos , Radical Hidroxila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA