Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Chemistry ; 26(26): 5789-5793, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32059067

RESUMO

Microbial surface attachment negatively impacts a wide range of devices from water purification membranes to biomedical implants. Mimics of antimicrobial peptides (AMPs) constituted from poly(N-substituted glycine) "peptoids" are of great interest as they resist proteolysis and can inhibit a wide spectrum of microbes. We investigate how terminal modification of a peptoid AMP-mimic and its surface immobilization affect antimicrobial activity. We also demonstrate a convenient surface modification strategy for enabling alkyne-azide "click" coupling on amino-functionalized surfaces. Our results verified that the N- and C-terminal peptoid structures are not required for antimicrobial activity. Moreover, our peptoid immobilization density and choice of PEG tether resulted in a "volumetric" spatial separation between AMPs that, compared to past studies, enabled the highest AMP surface activity relative to bacterial attachment. Our analysis suggests the importance of spatial flexibility for membrane activity and that AMP separation may be a controlling parameter for optimizing surface anti-biofouling.


Assuntos
Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Bactérias/efeitos dos fármacos , Peptoides/química , Antibacterianos/farmacologia , Incrustação Biológica
2.
Molecules ; 25(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235562

RESUMO

Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £135m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. In realising the development of a superior titanium (Ti) technology, we took inspiration from the growing interest in reactive polydopamine thin films for biomaterial surface functionalisations. Adopting a "one-pot" approach, we exposed medical-grade titanium to a mildly alkaline solution of dopamine hydrochloride (DHC) supplemented with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly, LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Herein, we provide evidence that simply immersing Ti in aqueous solutions of DHC-FHBP afforded a surface that was superior to FHBP-Ti at enhancing osteoblast maturation. The facile step we have taken to modify Ti and the biological performance of the final surface finish are appealing properties that may attract the attention of implant manufacturers in the future.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Indóis , Lisofosfolipídeos , Osteoblastos/metabolismo , Polímeros , Titânio , Linhagem Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Lisofosfolipídeos/química , Lisofosfolipídeos/farmacologia , Polímeros/química , Polímeros/farmacologia , Titânio/química , Titânio/farmacologia
3.
Angew Chem Int Ed Engl ; 59(10): 3864-3870, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31763753

RESUMO

Recently, emerging functions utilizing phenolic molecules, such as surface functionalizing agents or bioadhesives, have attracted significant interest. However, the most important role of phenolic compounds is to produce carbonized plant matter called "coal", which is widely used as an energy source in nearly all countries. Coalification is a long-term, high-temperature process in which phenols are converted into conducting carbonized matter. This study focuses on mimicking coalification processes to create conducting sealants from non-conducting phenolic compounds by heat treatment. We demonstrate that a phenolic adhesive, tri-hydroxybenzene (known as pyrogallol), and polyethylenimine mixture initially acts as an adhesive sealant that can be converted to a conducting carbon sealing material. The conductivity of the phenolic sealant is about 850 Ω-1 cm-1 , which is an approximately two-fold enhancement of the performance of carbon matter. Applications of the biomimetic adhesives described herein include conducting defect sealants in carbon nanomaterials and conducting binders for metal/carbon or ceramic/carbon composites.

4.
ACS Biomater Sci Eng ; 10(6): 4035-4045, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38778794

RESUMO

Frequent blood glucose monitoring is a crucial routine for diabetic patients. Traditional invasive methods can cause discomfort and pain and even pose a risk of infection. As a result, researchers have been exploring noninvasive techniques. However, a limited number of products have been developed for the market due to their high cost. In this study, we developed a low-cost, highly accessible, and noninvasive contact lens-based glucose monitoring system. We functionalized the surface of the contact lens with boronic acid, which has a strong but reversible binding affinity to glucose. To achieve facile conjugation of boronic acid, we utilized a functional coating layer called poly(tannic acid). The functionalized contact lens binds to glucose in body fluids (e.g., tear) and releases it when soaked in an enzymatic cocktail, allowing for the glucose level to be quantified through a colorimetric assay. Importantly, the transparency and oxygen permeability of the contact lens, which are crucial for practical use, were maintained after functionalization, and the lenses showed high biocompatibility. Based on the analysis of colorimetric data generated by the smartphone application and ultraviolet-visible (UV-vis) spectra, we believe that this contact lens has a high potential to be used as a smart diagnostic tool for monitoring and managing blood glucose levels.


Assuntos
Colorimetria , Lentes de Contato , Glucose , Colorimetria/métodos , Humanos , Glucose/metabolismo , Glucose/análise , Glicemia/análise , Glicemia/metabolismo , Ácidos Borônicos/química , Líquidos Corporais/química , Líquidos Corporais/metabolismo , Smartphone , Automonitorização da Glicemia/instrumentação , Automonitorização da Glicemia/métodos , Lágrimas/química , Lágrimas/metabolismo
5.
J Funct Biomater ; 15(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38921528

RESUMO

This research evolves into a comparative study of three different phenolic composites as coatings for rigid contact lenses, with a particular emphasis on enhancing their antifouling properties and hydrophobicity. The primary layer, comprised of diverse phenolic compounds, serves as a sturdy foundation. An exclusive secondary layer, featuring synthetic peptoids, is introduced to further minimize biofouling. Validated through X-ray photoelectron spectroscopy, the surface analysis confirms the successful integration of the polyphenolic layers and the subsequent grafting of peptoids onto the lens surface. The efficacy of the proposed coatings is substantiated through protein adsorption tests, providing definitive evidence of their antifouling capabilities. This research employs a nuanced assessment of coating performance, utilizing the quantification of fluorescence intensity to gauge effectiveness. Additionally, contact angle measurements offer insights into wettability and surface characteristics, contributing to a comprehensive understanding of the coating's practicality.

6.
Acta Biomater ; 155: 247-257, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216125

RESUMO

Plants release phenolic molecules to protect against invading pathogens. In plant-microorganism relationships, phenolics bind to surface oligosaccharides, inactivating microorganism activities. Inspired by phenol-saccharide interactions in plant defense systems, we designed an adhesive sealant. By screening 16 different saccharides, the O-acetyl group, rich in glucomannan (GM), exhibited rapid, robust binding with the galloyl moiety of a model phenolic molecule, tannic acid (TA). Furthermore, the interaction showed both pH and temperature (upper critical solution temperature) sensitivities. Utilizing O-acetyl-galloyl interactions, materials of all dimensions from beads (0D) to strings (1D), films (2D), and objects (3D) could be prepared, as a suitable platform for printing techniques. GMTA films are elastic, adhesive, water-resistant, and effectively sealed perforations, as demonstrated by (1) a lung incision followed by an air inflation model and (2) a thoracic diaphragm model. STATEMENT OF SIGNIFICANCE: In nature, phenolic molecules are 'nearly always' physically bound with polysaccharides, indicating that the phenolics widen the functions of polysaccharides. An example includes that phenolic-polysaccharide interactions are key defense mechanisms against microbial infection in plants whereas polysaccharide alone functions poorly. Despite the ubiquitous biochemistry of polysaccharide-phenolic interactions, efforts on understanding binding chemistry focusing on phenol/polysaccharide interactions is little. This study is important because we found for the first time that O-acetyl group is the moiety in polysaccharides to which phenolic cis-diol and/or cis-triol is spontaneously bound. The phenol-polysaccharide interaction is non-covalent yet robust, kinetically fast, and reversible. Inspired by the interaction chemistry, a simple mixture of phenolic molecules and O-acetyl group containing polysaccharides such as glucomannan opens a promising fabrication strategy toward functional polysaccharide-based material.


Assuntos
Fenóis , Polissacarídeos , Oligossacarídeos , Fenol , Temperatura
7.
Tissue Eng Regen Med ; 20(7): 1205-1217, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37815697

RESUMO

BACKGROUND: Current therapies to effectively treat long-bone defects and extensive bone tissue loss remains limited. In this study, we created a new bone substitute by integrating advanced technologies such as structure patterning, controlled release of a bone growth factor and conjugation system for clinically effective bone regeneration. This novel bioactive bone substitute was evaluated for its safety and efficacy using a rabbit ulna model. METHODS: A three dimensional bone patterned cylindrical structure with 1.5 cm in length and 5 mm in diameter was printed using poly(L-lactic acid)(PLLA) as a weight-bearing support and space-filling scaffold. And a bone morphogenetic protein 2 (BMP2) was employed to enhance bone regeneration, and coated to a 3D PLLA using alginate catechol and collagen to prolong the release kinetics. This novel bone substitute (BS)was evaluated for its physico-chemical and biological properties in vitro, and histological analysis and radiographical analysis such as X-ray, CT and micro-CT image analysis were performed to evaluate new bone formation in vivo. RESULTS: The BS possesses an ideal shape and mechanically suitable proeperties for clinical use, with an easy-to-grab and break-resistant design at both ends, 80 ± 10 MPa of compression strength, and BMP2 release for two months. Histological analysis demonstrated the biocompability of BS with minimal inflammation and immune response, and X-ray, CT and micro-CT demonstrated effective new bone formation in rabbit ulna defect model. CONCLUSION: The preclinical study of a novel bioactive bone substitute has shown its safe and effective properties in an animal model suggesting its clinical potential.


Assuntos
Substitutos Ósseos , Animais , Coelhos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Alicerces Teciduais/química , Regeneração Óssea , Ulna/patologia , Microtomografia por Raio-X
8.
Int J Biol Macromol ; 241: 124701, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37137352

RESUMO

We describe the synthesis of a nanostructured dermal patch composed of chitosan-tannic acid (CT) that can carry near-infrared (NIR) active Indocyanine green (ICG) dye for performing photothermal heat conversion activity. The NIR-responsive CT-I dermal patch can deliver topical antibiotic drugs (Neomycin). The CT-I and drug-loaded CT-I/N patches have been demonstrated by FTIR, SEM/EDX, TGA, and DSC analysis. The in vitro drug release from the CT-I/N patch are favorable in the dermal environment (pH = 5.5) and significantly increases 25 % more at higher temperatures of 40 to 45 °C. The CT-I/N showed increasing photothermal heat in response to NIR (808 nm) light. The in vivo thermograph demonstrated that the CT-I/N patch can generate >45 °C within 5 min NIR irradiation. As a result, sustained wound healing was shown in H&E (hematoxylin and eosin) staining dermal tissue. Such NIR-active nanostructure film/patch is promising for the future of any sustained on-demand drug delivery system.


Assuntos
Quitosana , Nanoestruturas , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Temperatura Alta , Liberação Controlada de Fármacos
9.
Tissue Eng Regen Med ; 20(1): 69-81, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36512177

RESUMO

BACKGROUND: Bone growth factors, particularly bone morphogenic protein-2 (BMP-2), are required for effective treatment of significant bone loss. Despite the extensive development of bone substitutes, much remains to be desired for wider application in clinical settings. The currently available bone substitutes cannot sustain prolonged BMP-2 release and are inconvenient to use. In this study, we developed a ready-to-use bone substitute by sequential conjugation of BMP to a three-dimensional (3D) poly(L-lactide) (PLLA) scaffold using novel molecular adhesive materials that reduced the operation time and sustained prolonged BMP release. METHODS: A 3D PLLA scaffold was printed and BMP-2 was conjugated with alginate-catechol and collagen. PLLA scaffolds were conjugated with different concentrations of BMP-2 and evaluated for bone regeneration in vitro and in vivo using a mouse calvarial model. The BMP-2 release kinetics were analyzed using ELISA. Histological analysis and micro-CT image analysis were performed to evaluate new bone formation. RESULTS: The 3D structure of the PLLA scaffold had a pore size of 400 µm and grid thickness of 187-230 µm. BMP-2 was released in an initial burst, followed by a sustained release for 14 days. Released BMP-2 maintained osteoinductivity in vitro and in vivo. Micro-computed tomography and histological findings demonstrate that the PLLA scaffold conjugated with 2 µg/ml of BMP-2 induced optimal bone regeneration. CONCLUSION: The 3D-printed PLLA scaffold conjugated with BMP-2 enhanced bone regeneration, demonstrating its potential as a novel bone substitute.


Assuntos
Substitutos Ósseos , Regeneração Óssea , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Poliésteres/química , Microtomografia por Raio-X , Humanos , Proteínas Recombinantes/química
10.
Polymers (Basel) ; 14(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35406154

RESUMO

In nature, phenolic biopolymers are utilized as functional tools and molecular crosslinkers to control the mechanical properties of biomaterials. Of particular interest are phenolic proteins/polysaccharides from living organisms, which are rich in catechol and/or gallol groups. Their strong underwater adhesion is attributed to the representative phenolic molecule, catechol, which stimulates intermolecular and intramolecular crosslinking induced by oxidative polymerization. Significant efforts have been made to understand the underlying chemistries, and researchers have developed functional biomaterials by mimicking the systems. Owing to their unique biocompatibility and ability to transform their mechanical properties, phenolic polymers have revolutionized biotechnologies. In this review, we highlight the bottom-up approaches for mimicking polyphenolic materials in nature and recent advances in related biomedical applications. We expect that this review will contribute to the rational design and synthesis of polyphenolic functional biomaterials and facilitate the production of related applications.

11.
ACS Appl Mater Interfaces ; 13(2): 3161-3165, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33401911

RESUMO

A modular approach to synthesizing functional pressure sensitive adhesives (PSAs) was introduced, wherein a modifiable acrylic PSA copolymer was synthesized by copolymerizing common PSA monomers with 6 mol % glycidyl methacrylate, allowing for subsequent functional group modification via the pendant epoxide functionality. This postmodification technique has the advantage of allowing the installation of a variety of functional groups relevant to adhesion, without variation of molecular weight. Because comparisons of cohesive and adhesive performance of candidate PSAs can be complicated by molecular weight differences, this strategy simplifies direct comparisons of the effects of functional groups on performance. As a proof of concept, a mussel-inspired catecholic PSA was synthesized by postreaction of the epoxide scaffold polymer with a thiol-modified catechol, allowing the effect of catechol on underlying structure-property relationships to be determined without variation in molecular weight. The mechanical performance of catecholic PSA was compared to relevant control PSAs by using industry-standard 180° peel and static shear tests, revealing an increase in peel strength achieved through catechol modification. Moreover, we observed an unexpected enhancement in PSA cohesive strength attributed to oxidation of catechol, which cannot be attributed to differences in molecular weight, a common source of changes in PSA cohesive strength.

12.
ACS Appl Mater Interfaces ; 12(38): 42531-42536, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32830951

RESUMO

Given a low concentration of phenols in the naturally occurring aqueous lubricant (mucilage) from hydrated seeds, their biological functions should be severely limited. Here, we introduce an undisclosed natural strategy that enables maximization of phenolic functions through exposing the phenols at the air-seed solid interface. Our findings not only offer a new perspective on plant reproduction physiology but also provide insights into an innovative design of lubricating biomaterials with additional phenolic functions.


Assuntos
Fenóis/metabolismo , Mucilagem Vegetal/metabolismo , Sementes/química , Ar , Estrutura Molecular , Tamanho da Partícula , Fenóis/química , Mucilagem Vegetal/química , Sementes/metabolismo , Propriedades de Superfície
13.
Nat Commun ; 11(1): 4848, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973166

RESUMO

Polydopamine (PDA) is a simple and versatile conformal coating material that has been proposed for a variety of uses; however in practice its performance is often hindered by poor mechanical properties and high roughness. Here, we show that blue-diode laser annealing dramatically improves mechanical performance and reduces roughness of PDA coatings. Laser-annealed PDA (LAPDA) was shown to be >100-fold more scratch resistant than pristine PDA and even better than hard inorganic substrates, which we attribute to partial graphitization and covalent coupling between PDA subunits during annealing. Moreover, laser annealing provides these benefits while preserving other attractive properties of PDA, as demonstrated by the superior biofouling resistance of antifouling polymer-grafted LAPDA compared to PDA modified with the same polymer. Our work suggests that laser annealing may allow the use of PDA in mechanically demanding applications previously considered inaccessible, without sacrificing the functional versatility that is so characteristic of PDA.


Assuntos
Indóis/química , Indóis/efeitos da radiação , Lasers , Polímeros/química , Polímeros/efeitos da radiação , Incrustação Biológica , Materiais Revestidos Biocompatíveis/química , Teste de Materiais , Propriedades de Superfície
14.
J Mater Chem B ; 6(8): 1149-1178, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32254177

RESUMO

In the past decade, fluorescent carbon nanoparticles (FNPs) prepared from natural resources and biomaterials have been attractive due to their various properties, such as unique optical properties, great biocompatibility, water dispersion, and facile surface functionalization. Depending on the properties of the carbon sources and the subsequent carbonization processes, internal/external stimuli responsive carbon nanoparticles have been generated that are useful for theranostic and sensing applications. In this review, we highlight the recent developments in the use of FNPs in nanomedicine in great detail, particularly for FNPs responding to internal stimuli, including redox, pH, and enzymes, and external stimuli, including temperature, light, and magnetic fields, for drug delivery and sensing applications. Furthermore, we hope to provide insight that could stimulate further research aiming for unparalleled useful applications. As a result, there are many possibilities that can be explored from this smart material.

15.
Nanoscale ; 9(43): 16596-16601, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29071324

RESUMO

Fluorescent carbon dots have received considerable attention as a result of their accessibility and potential applications. Although several prior studies have demonstrated that nearly any organic compound can be converted into carbon dots by chemical carbonization processes, mechanisms explaining the formation of carbon dots still remain unclear. Herein, we propose a seed-growth mechanism of carbon dot formation facilitated by ferulic acid, a widespread and naturally occurring phenolic compound in the seeds of Ocimum basilicum (basil). Ferulic acid triggers the local condensation of polysaccharide chains and forms catalytic core regions resulting in nanoscale carbonization. Our study indicates that carbon dots generated from natural sources might share the similar mechanism of phenolic compound mediated nanoscale condensation followed by core carbonization.

16.
Adv Mater ; 27(21): 3250-5, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25899742

RESUMO

Increase in conductivity and mechanical properties of a carbon nanotube (CNT) fiber inspired by mussel-adhesion chemistry is described. Infiltration of polydopamine into an as-drawn CNT fiber followed by pyrolysis results in a direct insulation-to-conduction transformation of poly(dopamine) into pyrolyzed-poly(dopamine) (py-PDA), retaining the intrinsic adhesive function of catecholamine. The py-PDA enhances both the electrical conductivity and the mechanical strength of the CNT fibers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA