Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Future Oncol ; 20(31): 2357-2370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011875

RESUMO

Aim: To determine the prevalence of deleterious mutations in BRCA1 and BRCA2 and in 13 genes involved in homologous recombination repair (HRR), the prevalence of genomic loss of heterozygosity and the allelic and hereditary status of BRCA1, BRCA2 and other HRR gene mutations in multiple solid tumor types.Patients & methods: This was a retrospective observational study of patients with an advanced/metastatic diagnosis in one of 15 solid tumor types, who were identified in a real-world clinico-genomic database.Results: Tumor tissue samples from 9457 patients were analyzed, among which 4.7% had known or suspected deleterious BRCA1/2 mutations. The prevalence (range) of mutations in HRR genes was 13.6% (2.4%-26.0%) and genomic loss of heterozygosity ≥16% was 20.6% (2.6-34.4%) across all tumor types.Conclusion: The prevalence of mutations varied significantly depending on the type of tumor.


The integrity of the human genome is maintained via multiple pathways of DNA repair, one of the most important of which is homologous recombination repair (HRR), which uses a sister chromatid as a template for high-fidelity restoration of altered DNA sequences. This study aimed to determine the prevalence of deleterious mutations, i.e., changes in the genetic code that interfere with proper cellular function, in the breast cancer genes BRCA1 and BRCA2 and in 13 other genes involved in HRR in various types of solid tumors in patients with advanced or metastatic cancer. The researchers found that 4.7% of tumor samples had BRCA1/2 mutations, 13.6% had mutations in any of the HRR genes and 20.6% had genomic loss of heterozygosity (gLOH) of at least 16% i.e., loss of sections of chromosomes affecting 16% or more of the genome. BRCA1/2 mutations were most common in ovarian cancer (13.1%), prostate cancer (9.3%), breast cancer (8.2%) and pancreatic cancer (4.9%). Prevalence for mutations in HRR genes ranges from 2.4 to 26.0% and gLOH ≥16% ranged from 2.6 to 34.4% depending on the tumor type. In conclusion, the prevalence of mutations in the BRCA1/2 genes, HRR genes and gLOH ≥16% varied widely across 15 tumor types.


Assuntos
Proteína BRCA1 , Proteína BRCA2 , Biomarcadores Tumorais , Perda de Heterozigosidade , Mutação , Neoplasias , Humanos , Feminino , Estudos Retrospectivos , Neoplasias/genética , Neoplasias/epidemiologia , Masculino , Biomarcadores Tumorais/genética , Proteína BRCA1/genética , Proteína BRCA2/genética , Prevalência , Pessoa de Meia-Idade , Recombinação Homóloga , Idoso , Adulto , Reparo de DNA por Recombinação/genética , Predisposição Genética para Doença
2.
Blood ; 136(14): 1657-1669, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32573700

RESUMO

Anaplastic large cell lymphoma (ALCL) is a T-cell malignancy predominantly driven by a hyperactive anaplastic lymphoma kinase (ALK) fusion protein. ALK inhibitors, such as crizotinib, provide alternatives to standard chemotherapy with reduced toxicity and side effects. Children with lymphomas driven by nucleophosmin 1 (NPM1)-ALK fusion proteins achieved an objective response rate to ALK inhibition therapy of 54% to 90% in clinical trials; however, a subset of patients progressed within the first 3 months of treatment. The mechanism for the development of ALK inhibitor resistance is unknown. Through genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) activation and knockout screens in ALCL cell lines, combined with RNA sequencing data derived from ALK inhibitor-relapsed patient tumors, we show that resistance to ALK inhibition by crizotinib in ALCL can be driven by aberrant upregulation of interleukin 10 receptor subunit alpha (IL10RA). Elevated IL10RA expression rewires the STAT3 signaling pathway, bypassing otherwise critical phosphorylation by NPM1-ALK. IL-10RA expression does not correlate with response to standard chemotherapy in pediatric patients, suggesting that a combination of crizotinib and chemotherapy could prevent ALK inhibitor resistance-specific relapse.


Assuntos
Antineoplásicos/farmacologia , Crizotinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Subunidade alfa de Receptor de Interleucina-10/genética , Linfoma Anaplásico de Células Grandes/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/genética , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Linhagem Celular , Crizotinibe/uso terapêutico , Relação Dose-Resposta a Droga , Edição de Genes , Expressão Gênica , Humanos , Imuno-Histoquímica , Subunidade alfa de Receptor de Interleucina-10/metabolismo , Linfoma Anaplásico de Células Grandes/tratamento farmacológico , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Modelos Biológicos , Nucleofosmina , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Proc Natl Acad Sci U S A ; 116(10): 4508-4517, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30709910

RESUMO

Oncogenic mutations in the small GTPase KRAS are frequently found in human cancers, and, currently, there are no effective targeted therapies for these tumors. Using a combinatorial siRNA approach, we analyzed a panel of KRAS mutant colorectal and pancreatic cancer cell lines for their dependency on 28 gene nodes that represent canonical RAS effector pathways and selected stress response pathways. We found that RAF node knockdown best differentiated KRAS mutant and KRAS WT cancer cells, suggesting RAF kinases are key oncoeffectors for KRAS addiction. By analyzing all 376 pairwise combination of these gene nodes, we found that cotargeting the RAF, RAC, and autophagy pathways can improve the capture of KRAS dependency better than targeting RAF alone. In particular, codepletion of the oncoeffector kinases BRAF and CRAF, together with the autophagy E1 ligase ATG7, gives the best therapeutic window between KRAS mutant cells and normal, untransformed cells. Distinct patterns of RAS effector dependency were observed across KRAS mutant cell lines, indicative of heterogeneous utilization of effector and stress response pathways in supporting KRAS addiction. Our findings revealed previously unappreciated complexity in the signaling network downstream of the KRAS oncogene and suggest rational target combinations for more effective therapeutic intervention.


Assuntos
Morte Celular Autofágica , Neoplasias Colorretais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células CACO-2 , Sobrevivência Celular/genética , Neoplasias Colorretais/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Células HCT116 , Humanos , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
4.
Br J Haematol ; 192(2): 354-365, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880915

RESUMO

Burkitt lymphoma (BL) accounts for almost two-thirds of all B-cell non-Hodgkin lymphoma (B-NHL) in children and adolescents and is characterised by a MYC translocation and rapid cell turnover. Intensive chemotherapeutic regimens have been developed in recent decades, including the lymphomes malins B (LMB) protocol, which have resulted in a survival rate in excess of 90%. Recent clinical trials have focused on immunochemotherapy, with the addition of rituximab to chemotherapeutic backbones, showing encouraging results. Despite these advances, relapse and refractory disease occurs in up to 10% of patients and salvage options for these carry a dismal prognosis. Efforts to better understand the molecular and functional characteristics driving relapse and refractory disease may help improve this prognosis. This study has established a paediatric BL patient-derived xenograft (PDX) resource which captures and maintains tumour heterogeneity, may be used to better characterise tumours and identify cell populations responsible for therapy resistance.


Assuntos
Linfoma de Burkitt/patologia , Animais , Linfoma de Burkitt/genética , Linfoma de Burkitt/terapia , Criança , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Xenoenxertos/patologia , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Células Tumorais Cultivadas
5.
Proc Natl Acad Sci U S A ; 112(14): E1724-33, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25805818

RESUMO

The small GTPase KRAS is frequently mutated in human cancer and currently there are no targeted therapies for KRAS mutant tumors. Here, we show that the small ubiquitin-like modifier (SUMO) pathway is required for KRAS-driven transformation. RNAi depletion of the SUMO E2 ligase Ubc9 suppresses 3D growth of KRAS mutant colorectal cancer cells in vitro and attenuates tumor growth in vivo. In KRAS mutant cells, a subset of proteins exhibit elevated levels of SUMOylation. Among these proteins, KAP1, CHD1, and EIF3L collectively support anchorage-independent growth, and the SUMOylation of KAP1 is necessary for its activity in this context. Thus, the SUMO pathway critically contributes to the transformed phenotype of KRAS mutant cells and Ubc9 presents a potential target for the treatment of KRAS mutant colorectal cancer.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Enzimas de Conjugação de Ubiquitina/metabolismo , Quinases raf/metabolismo , Proteínas ras/metabolismo , Animais , Células CACO-2 , Carcinogênese , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Genes ras , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Transplante de Neoplasias , Interferência de RNA , RNA Interferente Pequeno/metabolismo
6.
Adv Ther ; 41(2): 759-776, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169059

RESUMO

INTRODUCTION: Defects in the homologous recombination repair (HRR) pathway can include mutations in BRCA1 and BRCA2 (BRCAm) and other HRR genes (HRRm). These mutations are associated with a homologous recombination deficiency (HRD) phenotype. We evaluated testing journey and treatment patterns by BRCAm, HRRm, and HRD status in a real-world dataset. METHODS: Deidentified data for patients who had undergone comprehensive genomic profiling using FoundationOne®CDx were collected through December 31, 2020, from a real-world multi-tumor clinico-genomic database (CGDB) capturing data from clinics in the United States. Patients eligible for inclusion in this analysis had a confirmed diagnosis with advanced or metastatic disease between January 1, 2018, and December 31, 2019, for 1 of 15 solid tumor types. Objectives were to evaluate patient treatment patterns by BRCAm, HRRm, and HRD status and to describe the timing of when (throughout disease course) comprehensive genomic profiling was performed. RESULTS: Among 9457 patients included in the overall population with evaluable biomarker status, 7856 (83.1%) received ≥ 1 systemic therapy. Among the 7856 patients who received systemic therapy, 2324 (30.0%) underwent testing before first-line therapy, 4114 (52.4%) were tested after receiving first-line therapy and before receiving subsequent therapy (if any), 970 (12.3%) were tested after second-line therapy and before receiving subsequent therapy (if any), and 447 (5.7%) patients underwent testing after receiving third-line therapy. A higher proportion of patients with BRCAm, HRRm, or HRD-positive status were treated with poly(ADP-ribose) polymerase (PARP) inhibitors across all lines of therapy. There was no evidence of a meaningful difference in the proportion of patients who received other treatment (including chemotherapy and immunotherapy) by BRCAm, HRRm, or HRD status. CONCLUSION: The majority of patients from this real-world dataset underwent FoundationOne®CDx testing after initiation of first-line treatment. Testing appeared to influence treatment patterns, with a higher proportion of patients with BRCAm, HRRm, and HRD-positive disease receiving PARP inhibitors.


Assuntos
Neoplasias , Neoplasias Ovarianas , Humanos , Feminino , Reparo de DNA por Recombinação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Biomarcadores , Genômica , Neoplasias Ovarianas/patologia
7.
Nat Commun ; 15(1): 3422, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653965

RESUMO

Targeting Anaplastic lymphoma kinase (ALK) is a promising therapeutic strategy for aberrant ALK-expressing malignancies including neuroblastoma, but resistance to ALK tyrosine kinase inhibitors (ALK TKI) is a distinct possibility necessitating drug combination therapeutic approaches. Using high-throughput, genome-wide CRISPR-Cas9 knockout screens, we identify miR-1304-5p loss as a desensitizer to ALK TKIs in aberrant ALK-expressing neuroblastoma; inhibition of miR-1304-5p decreases, while mimics of this miRNA increase the sensitivity of neuroblastoma cells to ALK TKIs. We show that miR-1304-5p targets NRAS, decreasing cell viability via induction of apoptosis. It follows that the farnesyltransferase inhibitor (FTI) lonafarnib in addition to ALK TKIs act synergistically in neuroblastoma, inducing apoptosis in vitro. In particular, on combined treatment of neuroblastoma patient derived xenografts with an FTI and an ALK TKI complete regression of tumour growth is observed although tumours rapidly regrow on cessation of therapy. Overall, our data suggests that combined use of ALK TKIs and FTIs, constitutes a therapeutic approach to treat high risk neuroblastoma although prolonged therapy is likely required to prevent relapse.


Assuntos
Quinase do Linfoma Anaplásico , Dibenzocicloeptenos , Farnesiltranstransferase , GTP Fosfo-Hidrolases , MicroRNAs , Neuroblastoma , Piperidinas , Inibidores de Proteínas Quinases , Piridinas , Animais , Feminino , Humanos , Camundongos , Quinase do Linfoma Anaplásico/genética , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Farnesiltranstransferase/antagonistas & inibidores , Farnesiltranstransferase/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/patologia , Neuroblastoma/metabolismo , Piperidinas/farmacologia , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
JCO Precis Oncol ; 7: e2300195, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37972338

RESUMO

PURPOSE: Mutations in BRCA1 and/or BRCA2 (BRCAm), other homologous recombination repair genes (HRRm), and homologous recombination deficiency (HRD) lead to an accumulation of genomic alterations that can drive tumorigenesis. The prognostic impact of these HRR pathway defects on overall survival (OS) in patients not receiving poly (ADP-ribose) polymerase inhibitors (PARPi) or immunotherapy is unclear. We evaluated the association of HRR biomarkers with OS in patients with advanced solid tumors receiving therapy excluding PARPi and immunotherapy. METHODS: Deidentified data were collected through December 31, 2020, from a real-world clinicogenomic database (CGDB) with data originating from approximately 280 cancer clinics in the United States. Patients age 18 years and older with an advanced/metastatic diagnosis between 2018 and 2019 for 1 of 15 solid tumors and available data in the CGDB were included. The primary analysis evaluated the association between HRR pathway biomarkers and OS, using start of second-line therapy as the index date (to reduce immortal time bias). RESULTS: A total of 9,457 patients had available data for BRCA/HRR and 5,792 for HRD status; 4,890 (51.7%) were women and mean (SD) age was 65.9 (11.5) years. For the primary analysis, adjusted hazard ratios for OS were BRCAm (n = 156) versus BRCA wild-type (wt; n = 3,131; 0.83 [95% CI, 0.60 to 1.17]); for HRRm (n = 467) versus HRRwt (n = 282; 0.95 [95% CI, 0.79 to 1.14]); and for HRD-positive (n = 447) versus -negative (n = 1,687; 1.22 [95% CI, 1.02 to 1.47]). Results were similar using start of first-line and start of third-line therapy as index dates. CONCLUSION: This large, real-world study found no association between OS and either BRCA or HRR status but identified a possible linkage between HRD positivity and shorter median OS in patients with advanced solid tumors who did not receive PARPi or immunotherapy.


Assuntos
Neoplasias , Reparo de DNA por Recombinação , Humanos , Feminino , Adolescente , Idoso , Masculino , Reparo de DNA por Recombinação/genética , Neoplasias/genética , Neoplasias/terapia , Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Biomarcadores Tumorais/genética
9.
Nat Commun ; 10(1): 5428, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780656

RESUMO

Resistance to anaplastic lymphoma kinase (ALK)-targeted therapy in ALK-positive non-small cell lung cancer has been reported, with the majority of acquired resistance mechanisms relying on bypass signaling. To proactively identify resistance mechanisms in ALK-positive neuroblastoma (NB), we herein employ genome-wide CRISPR activation screens of NB cell lines treated with brigatinib or ceritinib, identifying PIM1 as a putative resistance gene, whose high expression is associated with high-risk disease and poor survival. Knockdown of PIM1 sensitizes cells of differing MYCN status to ALK inhibitors, and in patient-derived xenografts of high-risk NB harboring ALK mutations, the combination of the ALK inhibitor ceritinib and PIM1 inhibitor AZD1208 shows significantly enhanced anti-tumor efficacy relative to single agents. These data confirm that PIM1 overexpression decreases sensitivity to ALK inhibitors in NB, and suggests that combined front-line inhibition of ALK and PIM1 is a viable strategy for the treatment of ALK-positive NB independent of MYCN status.


Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/genética , Neuroblastoma/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , Quinase do Linfoma Anaplásico/genética , Animais , Apoptose/efeitos dos fármacos , Compostos de Bifenilo/farmacologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Compostos Organofosforados/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Tiazolidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Biosci ; 6: 57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891214

RESUMO

BACKGROUND: The ability to transform normal human cells into cancer cells with the introduction of defined genetic alterations is a valuable method for understanding the mechanisms of oncogenesis. Easy establishment of immortalized but non-transformed human cells from various tissues would facilitate these genetic analyses. RESULTS: We report here a simple, one-step immortalization method that involves retroviral vector mediated co-expression of the human telomerase protein and a shRNA targeting the CDKN2A gene locus. We demonstrate that this method could successfully immortalize human small airway epithelial cells while maintaining their chromosomal stability. We further showed that these cells retain p53 activity and can be transformed by the KRAS oncogene. CONCLUSIONS: Our method simplifies the immortalization process and is broadly applicable for establishing immortalized epithelial cell lines from primary human tissues for cancer research.

11.
Cancer Discov ; 4(10): 1182-1197, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25100204

RESUMO

UNLABELLED: RNAi is a powerful tool for target identification and can lead to novel therapies for pharmacologically intractable targets such as KRAS. RNAi therapy must combine potent siRNA payloads with reliable in vivo delivery for efficient target inhibition. We used a functional "Sensor" assay to establish a library of potent siRNAs against RAS pathway genes and to show that they efficiently suppress their targets at low dose. This reduces off-target effects and enables combination gene knockdown. We administered Sensor siRNAs in vitro and in vivo and validated the delivery of KRAS siRNA alone and siRNA targeting the complete RAF effector node (A/B/CRAF) as promising strategies to treat KRAS-mutant colorectal cancer. We further demonstrate that improved therapeutic efficacy is achieved by formulating siRNA payloads that combine both single-gene siRNA and node-targeted siRNAs (KRAS + PIK3CA/B). The customizable nature of Sensor siRNA payloads offers a universal platform for the combination target identification and development of RNAi therapeutics. SIGNIFICANCE: To advance RNAi therapy for KRAS-mutant cancer, we developed a validated siRNA library against RAS pathway genes that enables combination gene silencing. Using an in vivo model for real-time siRNA delivery tracking, we show that siRNA-mediated inhibition of KRAS as well as RAF or PI3K combinations can impair KRAS-mutant colorectal cancer in xenograft models.


Assuntos
Genes ras , Mutação , Neoplasias/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Técnicas de Transferência de Genes , Humanos , Camundongos , Nanopartículas , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , RNA Interferente Pequeno/administração & dosagem , Reprodutibilidade dos Testes , Transdução de Sinais , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Clin Invest ; 124(7): 3003-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24911146

RESUMO

The majority of non-small cell lung cancer (NSCLC) patients harbor EGFR-activating mutations that can be therapeutically targeted by EGFR tyrosine kinase inhibitors (EGFR-TKI), such as erlotinib and gefitinib. Unfortunately, a subset of patients with EGFR mutations are refractory to EGFR-TKIs. Resistance to EGFR inhibitors reportedly involves SRC activation and induction of epithelial-to-mesenchymal transition (EMT). Here, we have demonstrated that overexpression of CRIPTO1, an EGF-CFC protein family member, renders EGFR-TKI-sensitive and EGFR-mutated NSCLC cells resistant to erlotinib in culture and in murine xenograft models. Furthermore, tumors from NSCLC patients with EGFR-activating mutations that were intrinsically resistant to EGFR-TKIs expressed higher levels of CRIPTO1 compared with tumors from patients that were sensitive to EGFR-TKIs. Primary NSCLC cells derived from a patient with EGFR-mutated NSCLC that was intrinsically erlotinib resistant were CRIPTO1 positive, but gained erlotinib sensitivity upon loss of CRIPTO1 expression during culture. CRIPTO1 activated SRC and ZEB1 to promote EMT via microRNA-205 (miR-205) downregulation. While miR-205 depletion induced erlotinib resistance, miR-205 overexpression inhibited CRIPTO1-dependent ZEB1 and SRC activation, restoring erlotinib sensitivity. CRIPTO1-induced erlotinib resistance was directly mediated through SRC but not ZEB1; therefore, cotargeting EGFR and SRC synergistically attenuated growth of erlotinib-resistant, CRIPTO1-positive, EGFR-mutated NSCLC cells in vitro and in vivo, suggesting that this combination may overcome intrinsic EGFR-inhibitor resistance in patients with CRIPTO1-positive, EGFR-mutated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Proteínas Ligadas por GPI/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas de Neoplasias/genética , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal , Cloridrato de Erlotinib , Proteínas Ligadas por GPI/metabolismo , Gefitinibe , Genes erbB-1 , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA