Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Genes Dev ; 32(23-24): 1562-1575, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478249

RESUMO

Heat shock factor 1 (HSF-1) and forkhead box O (FOXO) are key transcription factors that protect cells from various stresses. In Caenorhabditis elegans, HSF-1 and FOXO together promote a long life span when insulin/IGF-1 signaling (IIS) is reduced. However, it remains poorly understood how HSF-1 and FOXO cooperate to confer IIS-mediated longevity. Here, we show that prefoldin 6 (PFD-6), a component of the molecular chaperone prefoldin-like complex, relays longevity response from HSF-1 to FOXO under reduced IIS. We found that PFD-6 was specifically required for reduced IIS-mediated longevity by acting in the intestine and hypodermis. We showed that HSF-1 increased the levels of PFD-6 proteins, which in turn directly bound FOXO and enhanced its transcriptional activity. Our work suggests that the prefoldin-like chaperone complex mediates longevity response from HSF-1 to FOXO to increase the life span in animals with reduced IIS.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Longevidade/genética , Chaperonas Moleculares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Intestinos/fisiologia , Chaperonas Moleculares/genética , Ligação Proteica , Transdução de Sinais/genética , Tela Subcutânea/fisiologia , Ativação Transcricional/genética
2.
Genome Res ; 32(11-12): 2003-2014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36351769

RESUMO

Aging is associated with changes in a variety of biological processes at the transcriptomic level, including gene expression. Two types of aging occur during a lifetime: chronological and physiological aging. However, dissecting the difference between chronological and physiological ages at the transcriptomic level has been a challenge because of its complexity. We analyzed the transcriptomic features associated with physiological and chronological aging using Caenorhabditis elegans as a model. Many structural and functional transcript elements, such as noncoding RNAs and intron-derived transcripts, were up-regulated with chronological aging. In contrast, mRNAs with many biological functions, including RNA processing, were down-regulated with physiological aging. We also identified an age-dependent increase in the usage of distal 3' splice sites in mRNA transcripts as a biomarker of physiological aging. Our study provides crucial information for dissecting chronological and physiological aging at the transcriptomic level.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Perfilação da Expressão Gênica , Proteínas de Caenorhabditis elegans/genética , Transcriptoma
3.
Trends Genet ; 37(9): 819-829, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34016449

RESUMO

Circular RNA (circRNA) is a closed, single-stranded transcript widely detected in eukaryotes. Recent studies indicate that the levels of circRNAs change with age in various tissues in multiple species, ranging from nematodes to mammals. Here we discuss the functional roles of circRNAs in animal aging and longevity. We review studies regarding the differential expression of circRNAs that contributes to cellular senescence and the pathogenesis of aging-associated diseases. We explore the features of aging-associated circRNAs by discussing their potential as biomarkers of aging, tissue specificity, physiological roles, action mechanisms, and evolutionarily conserved characteristics. Our review provides insights into current progress in circRNA research and their significant functions in the aging process.


Assuntos
Envelhecimento/genética , RNA Circular/fisiologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Marcadores Genéticos , Humanos , Mamíferos/genética , Mamíferos/fisiologia
4.
Genes Dev ; 30(9): 1047-57, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125673

RESUMO

Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans' life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Alimentos , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Insulina/genética , Longevidade/genética , Hormônios Peptídicos/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinais (Psicologia) , Meio Ambiente , Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Optogenética , Hormônios Peptídicos/metabolismo , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais
5.
PLoS Genet ; 16(3): e1008617, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130226

RESUMO

The oligosaccharyl transferase (OST) protein complex mediates the N-linked glycosylation of substrate proteins in the endoplasmic reticulum (ER), which regulates stability, activity, and localization of its substrates. Although many OST substrate proteins have been identified, the physiological role of the OST complex remains incompletely understood. Here we show that the OST complex in C. elegans is crucial for ER protein homeostasis and defense against infection with pathogenic bacteria Pseudomonas aeruginosa (PA14), via immune-regulatory PMK-1/p38 MAP kinase. We found that genetic inhibition of the OST complex impaired protein processing in the ER, which in turn up-regulated ER unfolded protein response (UPRER). We identified vitellogenin VIT-6 as an OST-dependent glycosylated protein, critical for maintaining survival on PA14. We also showed that the OST complex was required for up-regulation of PMK-1 signaling upon infection with PA14. Our study demonstrates that an evolutionarily conserved OST complex, crucial for ER homeostasis, regulates host defense mechanisms against pathogenic bacteria.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplasmático/metabolismo , Proteostase/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Hexosiltransferases/metabolismo , Imunidade Inata/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Pseudomonas aeruginosa/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Regulação para Cima/fisiologia , Vitelogeninas/metabolismo
6.
Genes Dev ; 29(23): 2490-503, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26637528

RESUMO

Glucose-rich diets shorten the life spans of various organisms. However, the metabolic processes involved in this phenomenon remain unknown. Here, we show that sterol regulatory element-binding protein (SREBP) and mediator-15 (MDT-15) prevent the life-shortening effects of a glucose-rich diet by regulating fat-converting processes in Caenorhabditis elegans. Up-regulation of the SREBP/MDT-15 transcription factor complex was necessary and sufficient for alleviating the life-shortening effect of a glucose-rich diet. Glucose feeding induced key enzymes that convert saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), which are regulated by SREBP and MDT-15. Furthermore, SREBP/MDT-15 reduced the levels of SFAs and moderated glucose toxicity on life span. Our study may help to develop strategies against elevated blood glucose and free fatty acids, which cause glucolipotoxicity in diabetic patients.


Assuntos
Envelhecimento/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/enzimologia , Proteínas de Caenorhabditis elegans/genética , Dieta , Sacarose Alimentar/farmacologia , Indução Enzimática/efeitos dos fármacos , Ácidos Graxos Dessaturases/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Glucose/farmacologia , Glucose/toxicidade , Interferência de RNA , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Fatores de Transcrição/genética
7.
PLoS Biol ; 17(8): e3000415, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31408455

RESUMO

Low temperatures delay aging and promote longevity in many organisms. However, the metabolic and homeostatic aspects of low-temperature-induced longevity remain poorly understood. Here, we show that lipid homeostasis regulated by Caenorhabditis elegans Mediator 15 (MDT-15 or MED15), a transcriptional coregulator, is essential for low-temperature-induced longevity and proteostasis. We find that inhibition of mdt-15 prevents animals from living long at low temperatures. We show that MDT-15 up-regulates fat-7, a fatty acid desaturase that converts saturated fatty acids (SFAs) to unsaturated fatty acids (UFAs), at low temperatures. We then demonstrate that maintaining a high UFA/SFA ratio is essential for proteostasis at low temperatures. We show that dietary supplementation with a monounsaturated fatty acid, oleic acid (OA), substantially mitigates the short life span and proteotoxicity in mdt-15(-) animals at low temperatures. Thus, lipidostasis regulated by MDT-15 appears to be a limiting factor for proteostasis and longevity at low temperatures. Our findings highlight the crucial roles of lipid regulation in maintaining normal organismal physiology under different environmental conditions.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Longevidade/fisiologia , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans , Temperatura Baixa , Suplementos Nutricionais , Ácidos Graxos Dessaturases/metabolismo , Homeostase , Metabolismo dos Lipídeos , Ácido Oleico/administração & dosagem , Proteostase , Ativação Transcricional
8.
Immun Ageing ; 19(1): 56, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380393

RESUMO

Immunosenescence is an age-dependent decline in immune functions and hallmark of aging in diverse species, ranging from invertebrates to mammals. However, identifying the factors responsible for immunosenescence is challenging because of the complexity of immune systems and aging in mammals. The roundworm Caenorhabditis elegans is suitable for understanding immunosenescence because of its simple immune system and rapid aging process. In this review, we discuss the advances in our understanding of immunosenescence in C. elegans. PMK-1/p38 mitogen-activated protein kinase (MAPK), SKN-1/NRF, and ZIP-10/bZIP transcription factor regulate immunosenescence through p38 MAPK and insulin/IGF-1 signaling pathways. Because these factors and pathways are evolutionarily conserved, the findings discussed in this review may help understand the mechanisms underlying immunosenescence and develop new treatment therapy for immunosenescence in humans.

9.
PLoS Genet ; 15(12): e1008508, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31815936

RESUMO

Zinc is essential for cellular functions as it is a catalytic and structural component of many proteins. In contrast, cadmium is not required in biological systems and is toxic. Zinc and cadmium levels are closely monitored and regulated as their excess causes cell stress. To maintain homeostasis, organisms induce metal detoxification gene programs through stress responsive transcriptional regulatory complexes. In Caenorhabditis elegans, the MDT-15 subunit of the evolutionarily conserved Mediator transcriptional coregulator is required to induce genes upon exposure to excess zinc and cadmium. However, the regulatory partners of MDT-15 in this response, its role in cellular and physiological stress adaptation, and the putative role for mammalian MED15 in the metal stress responses remain unknown. Here, we show that MDT-15 interacts physically and functionally with the Nuclear Hormone Receptor HIZR-1 to promote molecular, cellular, and organismal adaptation to cadmium and excess zinc. Using gain- and loss-of-function mutants and qRT-PCR and reporter analysis, we find that mdt-15 and hizr-1 cooperate to induce zinc and cadmium responsive genes. Moreover, the two proteins interact physically in yeast-two-hybrid assays and this interaction is enhanced by the addition of zinc or cadmium, the former a known ligand of HIZR-1. Functionally, mdt-15 and hizr-1 mutants show defective storage of excess zinc in the gut and are hypersensitive to zinc-induced reductions in egg-laying. Furthermore, mdt-15 but not hizr-1 mutants are hypersensitive to cadmium-induced reductions in egg-laying, suggesting potential divergence of regulatory pathways. Lastly, mammalian MDT-15 orthologs bind genomic regulatory regions of metallothionein and zinc transporter genes in a cadmium and zinc-stimulated fashion, and human MED15 is required to induce a metallothionein gene in lung adenocarcinoma cells exposed to cadmium. Collectively, our data show that mdt-15 and hizr-1 cooperate to regulate cadmium detoxification and zinc storage and that this mechanism is at least partially conserved in mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Zinco/toxicidade , Animais , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 4 Nuclear de Hepatócito/genética , Humanos , Metalotioneína/genética , Mutação , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , Estresse Fisiológico , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
10.
EMBO J ; 36(8): 1046-1065, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28283579

RESUMO

Mitochondria play key roles in cellular immunity. How mitochondria contribute to organismal immunity remains poorly understood. Here, we show that HSP-60/HSPD1, a major mitochondrial chaperone, boosts anti-bacterial immunity through the up-regulation of p38 MAP kinase signaling. We first identify 16 evolutionarily conserved mitochondrial components that affect the immunity of Caenorhabditis elegans against pathogenic Pseudomonas aeruginosa (PA14). Among them, the mitochondrial chaperone HSP-60 is necessary and sufficient to increase resistance to PA14. We show that HSP-60 in the intestine and neurons is crucial for the resistance to PA14. We then find that p38 MAP kinase signaling, an evolutionarily conserved anti-bacterial immune pathway, is down-regulated by genetic inhibition of hsp-60, and up-regulated by increased expression of hsp-60 Overexpression of HSPD1, the mammalian ortholog of hsp-60, increases p38 MAP kinase activity in human cells, suggesting an evolutionarily conserved mechanism. Further, cytosol-localized HSP-60 physically binds and stabilizes SEK-1/MAP kinase kinase 3, which in turn up-regulates p38 MAP kinase and increases immunity. Our study suggests that mitochondrial chaperones protect host eukaryotes from pathogenic bacteria by up-regulating cytosolic p38 MAPK signaling.


Assuntos
Caenorhabditis elegans/imunologia , Chaperonina 60/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Mitocondriais/imunologia , Pseudomonas aeruginosa/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/imunologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/imunologia , Chaperonina 60/genética , Humanos , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/imunologia , Sistema de Sinalização das MAP Quinases/genética , Proteínas Mitocondriais/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
J Neurogenet ; 34(3-4): 518-526, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32633588

RESUMO

Temperature affects animal physiology, including aging and lifespan. How temperature and biological systems interact to influence aging and lifespan has been investigated using model organisms, including the nematode Caenorhabditis elegans. In this review, we discuss mechanisms by which diverse cellular factors modulate the effects of ambient temperatures on aging and lifespan in C. elegans. C. elegans thermosensory neurons alleviate lifespan-shortening effects of high temperatures via sterol endocrine signaling and probably through systemic regulation of cytosolic proteostasis. At low temperatures, C. elegans displays a long lifespan by upregulating the cold-sensing TRPA channel, lipid homeostasis, germline-mediated prostaglandin signaling, and autophagy. In addition, co-chaperone p23 amplifies lifespan changes affected by high and low temperatures. Our review summarizes how external temperatures modulate C. elegans lifespan and provides information regarding responses of biological processes to temperature changes, which may affect health and aging at an organism level.


Assuntos
Caenorhabditis elegans/fisiologia , Longevidade/fisiologia , Temperatura , Adaptação Fisiológica/fisiologia , Células-Tronco Germinativas Adultas/fisiologia , Envelhecimento/fisiologia , Animais , Autofagia/genética , Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Temperatura Baixa/efeitos adversos , Sistema Endócrino/fisiologia , Resposta ao Choque Térmico , Mamíferos/fisiologia , Prostaglandinas/fisiologia , Proteostase , Células Receptoras Sensoriais/fisiologia , Especificidade da Espécie , Sensação Térmica/fisiologia
12.
Cell Mol Life Sci ; 75(23): 4287-4300, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30019215

RESUMO

The initiator tRNA (Met-tRNA i Met ) at the P site of the small ribosomal subunit plays an important role in the recognition of an mRNA start codon. In bacteria, the initiator tRNA carrier, IF2, facilitates the positioning of Met-tRNA i Met on the small ribosomal subunit. Eukarya contain the Met-tRNA i Met carrier, eIF2 (unrelated to IF2), whose carrier activity is inhibited under stress conditions by the phosphorylation of its α-subunit by stress-activated eIF2α kinases. The stress-resistant initiator tRNA carrier, eIF2A, was recently uncovered and shown to load Met-tRNA i Met on the 40S ribosomal subunit associated with a stress-resistant mRNA under stress conditions. Here, we report that eIF2A interacts and functionally cooperates with eIF5B (a homolog of IF2), and we describe the functional domains of eIF2A that are required for its binding of Met-tRNA i Met , eIF5B, and a stress-resistant mRNA. The results indicate that the eukaryotic eIF5B-eIF2A complex functionally mimics the bacterial IF2 containing ribosome-, GTP-, and initiator tRNA-binding domains in a single polypeptide.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , RNA de Transferência de Metionina/metabolismo , eIF-2 Quinase/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fator de Iniciação 2 em Eucariotos/genética , Fatores de Iniciação em Eucariotos/genética , Células HEK293 , Humanos , Mutação , Ligação Proteica , Interferência de RNA , RNA de Transferência de Metionina/genética , Homologia de Sequência de Aminoácidos , eIF-2 Quinase/genética
13.
Cell Mol Life Sci ; 74(10): 1793-1803, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27942749

RESUMO

Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.


Assuntos
Envelhecimento , Carboidratos da Dieta/metabolismo , Glucose/metabolismo , Longevidade , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Dieta da Carga de Carboidratos/efeitos adversos , Fatores de Transcrição Forkhead/metabolismo , Humanos , Insulina/metabolismo , Redes e Vias Metabólicas , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fatores de Transcrição/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(31): E4246-55, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195740

RESUMO

The homeostatic maintenance of the genomic DNA is crucial for regulating aging processes. However, the role of RNA homeostasis in aging processes remains unknown. RNA helicases are a large family of enzymes that regulate the biogenesis and homeostasis of RNA. However, the functional significance of RNA helicases in aging has not been explored. Here, we report that a large fraction of RNA helicases regulate the lifespan of Caenorhabditis elegans. In particular, we show that a DEAD-box RNA helicase, helicase 1 (HEL-1), promotes longevity by specifically activating the DAF-16/forkhead box O (FOXO) transcription factor signaling pathway. We find that HEL-1 is required for the longevity conferred by reduced insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) and is sufficient for extending lifespan. We further show that the expression of HEL-1 in the intestine and neurons contributes to longevity. HEL-1 enhances the induction of a large fraction of DAF-16 target genes. Thus, the RNA helicase HEL-1 appears to promote longevity in response to decreased IIS as a transcription coregulator of DAF-16. Because HEL-1 and IIS are evolutionarily well conserved, a similar mechanism for longevity regulation via an RNA helicase-dependent regulation of FOXO signaling may operate in mammals, including humans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade , RNA Helicases/metabolismo , Transdução de Sinais , Animais , Sequência de Bases , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Genes de Helmintos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo , Dados de Sequência Molecular , Mutação/genética , Neurônios/metabolismo , Ligação Proteica , RNA Helicases/genética , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor de Insulina/metabolismo , Reprodução , Análise de Sequência de RNA , Regulação para Cima
15.
Metab Eng ; 38: 401-408, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27725264

RESUMO

Biosynthesis of isoprenoids via the 1-deoxy-D-xylulose-5-phosphate (DXP) pathway requires equimolar glyceraldehyde 3-phosphate and pyruvate to divert carbon flux toward the products of interest. Here, we demonstrate that precursor balancing is one of the critical steps for the production of isoprenoids in Escherichia coli. First, the implementation of the synthetic lycopene production pathway as a model system and the amplification of the native DXP pathway were accomplished using synthetic constitutive promoters and redesigned 5'-untranslated regions (5'-UTRs). Next, fine-controlled precursor balancing was investigated by tuning phosphoenolpyruvate synthase (PpsA) or glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The results showed that tuning-down of gapA improved the specific lycopene content by 45% compared to the overexpression of ppsA. The specific lycopene content in the strains with down-regulated gapA increased by 97% compared to that in the parental strain. Our results indicate that gapA is the best target for precursor balancing to increase biosynthesis of isoprenoids.


Assuntos
Vias Biossintéticas/genética , Carotenoides/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Regulação Enzimológica da Expressão Gênica/genética , Gliceraldeído-3-Fosfato Desidrogenases/genética , Engenharia Metabólica/métodos , Terpenos/metabolismo , Escherichia coli , Proteínas de Escherichia coli , Melhoramento Genético/métodos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Licopeno , Redes e Vias Metabólicas/genética , Terpenos/isolamento & purificação
16.
Mol Cells ; : 100141, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-39476972

RESUMO

RNA quantification is crucial for understanding gene expression and regulation. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is a widely used technique for RNA quantification because of its practical and quantitative nature, sensitivity, and specificity. Here, we provide an overview of RT-qPCR, focusing on essential reagents, the importance of primer design, the detailed workflow, and data analysis methods. This guide will be useful for scientists who are unfamiliar with RT-qPCR, highlighting key considerations for successful RNA quantification.

17.
Mol Cells ; 47(5): 100060, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614390

RESUMO

Transcriptome analysis is widely used for current biological research but remains challenging for many experimental scientists. Here, we present a brief but broad guideline for transcriptome analysis, focusing on RNA sequencing, by providing the list of publicly available datasets, tools, and R packages for practical transcriptome analysis. This work will be useful for biologists to perform key transcriptomic analysis with minimum expertise in bioinformatics.


Assuntos
Biologia Computacional , Análise de Sequência de RNA , Humanos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Transcriptoma/genética
18.
Mol Cells ; 47(9): 100102, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39053732

RESUMO

Cellular senescence is a crucial biological process associated with organismal aging and many chronic diseases. Here, we present a brief guide to mammalian senescence assays, including the measurement of cell cycle arrest, change in cellular morphology, senescence-associated ß-galactosidase (SA-ß-gal) staining, and the expression of senescence-associated secretory phenotype (SASP). This work will be useful for biologists with minimum expertise in cellular senescence assays.


Assuntos
Senescência Celular , beta-Galactosidase , Animais , Humanos , beta-Galactosidase/metabolismo , Fenótipo Secretor Associado à Senescência , Células Cultivadas , Pontos de Checagem do Ciclo Celular
19.
Mol Cells ; 47(2): 100011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242235

RESUMO

Online application for survival analysis (OASIS) and its update, OASIS 2, have been widely used for survival analysis in biological and medical sciences. Here, we provide a portable version of OASIS, an all-in-one offline suite, to facilitate secure survival analysis without uploading the data to online servers. OASIS portable provides a virtualized and isolated instance of the OASIS 2 webserver, operating on the users' personal computers, and enables user-friendly survival analysis without internet connection and security issues.


Assuntos
Internet , Análise de Sobrevida
20.
Mol Cells ; 47(4): 100047, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508494

RESUMO

Aging is accompanied by the gradual deregulation of the transcriptome. However, whether age-dependent changes in the transcriptome are evolutionarily conserved or diverged remains largely unexplored. Here, we performed a meta-analysis examining the age-dependent changes in the transcriptome using publicly available datasets of 11 representative metazoans, ranging from Caenorhabditis elegans to humans. To identify the transcriptomic changes associated with aging, we analyzed various aspects of the transcriptome, including genome composition, RNA processing, and functional consequences. The use of introns and novel splice sites tended to increase with age, particularly in the brain. In addition, our analysis suggests that the age-dependent accumulation of premature termination codon-containing transcripts is a common feature of aging across multiple animal species. Using C. elegans as a test model, we showed that several splicing factors that are evolutionarily conserved and age-dependently downregulated were required to maintain a normal lifespan. Thus, aberrant RNA processing appears to be associated with aging and a short lifespan in various species.


Assuntos
Envelhecimento , Caenorhabditis elegans , Transcriptoma , Animais , Envelhecimento/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Humanos , Processamento Pós-Transcricional do RNA , Longevidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA