Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(50): 15426-31, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26621717

RESUMO

In this study, we present a method for assembling biofunctionalized paper into a multiform structured scaffold system for reliable tissue regeneration using an origami-based approach. The surface of a paper was conformally modified with a poly(styrene-co-maleic anhydride) layer via initiated chemical vapor deposition followed by the immobilization of poly-l-lysine (PLL) and deposition of Ca(2+). This procedure ensures the formation of alginate hydrogel on the paper due to Ca(2+) diffusion. Furthermore, strong adhesion of the alginate hydrogel on the paper onto the paper substrate was achieved due to an electrostatic interaction between the alginate and PLL. The developed scaffold system was versatile and allowed area-selective cell seeding. Also, the hydrogel-laden paper could be folded freely into 3D tissue-like structures using a simple origami-based method. The cylindrically constructed paper scaffold system with chondrocytes was applied into a three-ring defect trachea in rabbits. The transplanted engineered tissues replaced the native trachea without stenosis after 4 wks. As for the custom-built scaffold system, the hydrogel-laden paper system will provide a robust and facile method for the formation of tissues mimicking native tissue constructs.


Assuntos
Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Papel , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Alginatos/química , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/transplante , Força Compressiva , Ácido Glucurônico/química , Células HeLa , Ácidos Hexurônicos/química , Humanos , Maleatos/química , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Varredura , Peso Molecular , Neovascularização Fisiológica/efeitos dos fármacos , Poliestirenos/química , Coelhos , Espectrometria por Raios X , Traqueia/efeitos dos fármacos , Traqueia/fisiologia
2.
Soft Matter ; 12(18): 4135-41, 2016 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-27067252

RESUMO

The prediction of hygroscopic swelling of flexible polymer substrates is crucial in various fields from smart structures to flexible electronics. In this study, the prediction method for time-dependent hygroscopic deformation is presented by employing the finite element method (FEM). In order to precisely consider the strain gradients inside the substrate, moisture distribution depending on time is quantitatively investigated by a moisture absorption analysis and sequentially combined with a mechanical deformation analysis. The essential hygroscopic properties including the saturated moisture content, moisture diffusivity, and the coefficient of moisture expansion are precisely measured. Through the application of these hygroscopic properties to a hygro-mechanical analysis model, the moisture distribution and the hygroscopic deformation are quantitatively simulated with time. For the verification of this model, the simulation results of bilayer structures are compared with the experimental results, which are measured using a three-dimensional deformation measurement system. The presented model demonstrates that the global and local hygroscopic deformations are accurately predicted by this approach, showing above 90% averaged accuracy at each time step. These results can be obtained by precisely measured hygroscopic properties and the consideration of the effect of non-uniform distribution on the hygroscopic deformation.

3.
ACS Appl Mater Interfaces ; 16(23): 30336-30343, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38781291

RESUMO

Thermomechanical properties of ultrathin films are crucial for fabrication and use of reliable thin electronic devices. Due to the lack of precise measurement techniques, the thermal deformation behavior of ultrathin films has not yet been clarified. Here, we propose a film on heated liquid (FOHL) method to simultaneously measure the coefficient of thermal expansion (CTE) and glass transition temperature (Tg) of multiple ultrathin polymer films. Free thermal expansion of thin films without substrate interaction can be guaranteed when the thin films are afloat on a liquid surface. To investigate the thermal behavior in a wide temperature range, glycerol is adopted as a thermally stable heating platform owing to its high boiling point of 290 °C. The thin films are transferred onto the glycerol surface from the water surface using the hygroscopic properties of glycerol. Highly accurate and high-throughput thermal strain measurement is achieved using three-dimensional digital image correlation (3D-DIC). The thermomechanical properties of ultrathin polystyrene thin films of various thicknesses (25-400 nm) are precisely characterized utilizing the FOHL and 3D-DIC method.

4.
Sci Rep ; 13(1): 14354, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37658105

RESUMO

A fast and straightforward fabrication process for producing a robust, flexible, and transparent conductive film was demonstrated using nanowelding of Ag nanowires through pressure-assisted microwave irradiation. This innovative process effectively reduces the sheet resistance of the Ag nanowire transparent conductive film without causing any thermal distortion to the PET substrate. The microwave irradiation induces nanowelding between Ag nanowires, leading to a decrease in sheet resistance by forming nanowelding junctions. This selective heating of Ag nanowires further enhances the reduction in sheet resistance. Additionally, the application of pressure-assisted microwave irradiation allows the Ag nanowires to be embedded into the PET substrate, resulting in the formation of a robust film capable of withstanding cycling bending stress. The pressure-assisted microwave irradiation process proves to be a strong fabrication method for creating Ag nanowire transparent conductive films, especially when dealing with thermally weak substrate materials.

5.
ACS Appl Mater Interfaces ; 14(24): 28258-28269, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35674729

RESUMO

Flexible micro-light-emitting diodes (f-µLEDs) have been regarded as an attractive light source for the next-generation human-machine interfaces, thanks to their noticeable optoelectronic performances. However, when it comes to their practical utilizations fulfilling industrial standards, there have been unsolved reliability and durability issues of the f-µLEDs, despite previous developments in the high-performance f-µLEDs for various applications. Herein, highly robust flexible µLEDs (f-HµLEDs) with 20 × 20 arrays, which are realized by a siloxane-based organic-inorganic hybrid material (SHM), are reported. The f-HµLEDs are created by combining the f-µLED fabrication process with SHM synthesis procedures (i.e., sol-gel reaction and successive photocuring). The outstanding mechanical, thermal, and environmental stabilities of our f-HµLEDs are confirmed by a host of experimental and theoretical examinations, including a bending fatigue test (105 bending/unbending cycles), a lifetime accelerated stress test (85 °C and 85% relative humidity), and finite element method simulations. Eventually, to demonstrate the potential of our f-HµLEDs for practical applications of flexible displays and/or biomedical devices, their white light emission due to quantum dot-based color conversion of blue light emitted by GaN-based f-HµLEDs is demonstrated, and the biocompatibility of our f-HµLEDs is confirmed via cytotoxicity and cell proliferation tests with muscle, bone, and neuron cell lines. As far as we can tell, this work is the first demonstration of the flexible µLED encapsulation platform based on the SHM, which proved its mechanical, thermal, and environmental stabilities and biocompatibility, enabling us to envisage biomedical and/or flexible display applications using our f-HµLEDs.


Assuntos
Iluminação , Pontos Quânticos , Humanos , Luz , Reprodutibilidade dos Testes , Siloxanas
6.
Materials (Basel) ; 14(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440741

RESUMO

The effects of Ag nanoparticle (Ag NP) addition on interfacial reaction and mechanical properties of Sn-58Bi solder joints using ultra-fast laser soldering were investigated. Laser-assisted low-temperature bonding was used to solder Sn-58Bi based pastes, with different Ag NP contents, onto organic surface preservative-finished Cu pads of printed circuit boards. The solder joints after laser bonding were examined to determine the effects of Ag NPs on interfacial reactions and intermetallic compounds (IMCs) and high-temperature storage tests performed to investigate its effects on the long-term reliabilities of solder joints. Their mechanical properties were also assessed using shear tests. Although the bonding time of the laser process was shorter than that of a conventional reflow process, Cu-Sn IMCs, such as Cu6Sn5 and Cu3Sn, were well formed at the interface of the solder joint. The addition of Ag NPs also improved the mechanical properties of the solder joints by reducing brittle fracture and suppressing IMC growth. However, excessive addition of Ag NPs degraded the mechanical properties due to coarsened Ag3Sn IMCs. Thus, this research predicts that the laser bonding process can be applied to low-temperature bonding to reduce thermal damage and improve the mechanical properties of Sn-58Bi solders, whose microstructure and related mechanical properties can be improved by adding optimal amounts of Ag NPs.

7.
Nanomaterials (Basel) ; 10(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287131

RESUMO

In this study, curved nanostructures, which are difficult to obtain, were created on an Si substrate through the bonding, swelling, and breaking processes of the polymer and silicone substrate. This method can be utilized to obtain convex nanostructures over large areas. The method is simpler than typical semiconductor processing with photolithography or compared to wet- or vacuum-based dry etching processes. The polymer bonding, swelling (or no swelling), and breaking processes that are performed in this process were theoretically analyzed through a numerical analysis of permeability and modeling. Through this process, we designed a convex nanostructure that can be produced experimentally in an accurate manner.

8.
ACS Appl Mater Interfaces ; 11(14): 13416-13422, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30895773

RESUMO

For flexible devices that inevitably undergo repetitive deformations, it is important to evaluate and control the mechanical strain imposed on the flexible systems for enhancing the reliability. In this paper, a novel experimental method to directly visualize cross-sectional strain distribution in the thin flexible devices is proposed. Digital image correlation (DIC) is effectively adapted by using microscopic images of the cross section for accurate analysis of the microscale deformations. To conduct the DIC strain analysis, speckle patterning is accomplished by using microparticles from diamond-abrasive suspensions with optimized fabrication conditions. First, the cross-sectional micro-DIC analysis is performed successfully for 100 µm-thick substrates. Full-field strain quantification and easy inspection of a neutral plane are demonstrated and compared with results of finite element analysis simulation. Using the presented method, generation of multiple neutral planes is clearly visualized for a trilayer structure with a very soft adhesive midlayer, where strain decoupling occurs by severe shear deformation of the soft adhesive layer. Furthermore, bending strain distribution in a flexible fabric-reinforced polymer (FRP) substrate is also investigated to analyze and predict fatigue fracture in the complex inner structure under repetitive bending loading.

9.
Sci Rep ; 9(1): 7071, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068646

RESUMO

Coefficient of thermal expansion (CTE) for thin film has been measured only from change in thickness because thin film has to be constrained on a solid substrate. However, thin film CTE shows different values depending on the supporting solid substrate. Here, a novel measurement method is suggested to quantitatively measure the in-plane thermal expansion of thin films floating on a water surface. In-plane thermal expansion of thin films on water surface is achieved by heating the water. The CTE is measured through a digital image correlation (DIC) technique. The DIC tracks displacement marks deposited on the film surface, and the in-plane thermal strain is defined as the change in distance between the patterns. The method can be applied to measure the CTE of polymer, metal, and graphene with a thickness ranging from a micrometer to one-atom-thickness. The in-plane thermal expansion of the polystyrene (PS) thin film decreased as the film thickness decreased. The negative CTE of graphene is also successfully explored without any substrate effects or complicated calculations. The CTE measurement method can provide understanding of the intrinsic thermal expansion behavior of thin films including emerging two-dimensional materials.

10.
ACS Appl Mater Interfaces ; 11(26): 23639-23648, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31180635

RESUMO

Flexible and wearable pressure sensors have attracted a tremendous amount of attention due to their wider applications in human interfaces and healthcare monitoring. However, achieving accurate pressure detection and stability against external stimuli (in particular, bending deformation) over a wide range of pressures from tactile to body weight levels is a great challenge. Here, we introduce an ultrawide-range, bending-insensitive, and flexible pressure sensor based on a carbon nanotube (CNT) network-coated thin porous elastomer sponge for use in human interface devices. The integration of the CNT networks into three-dimensional microporous elastomers provides high deformability and a large change in contact between the conductive CNT networks due to the presence of micropores, thereby improving the sensitivity compared with that obtained using CNT-embedded solid elastomers. As electrical pathways are continuously generated up to high compressive strain (∼80%), the pressure sensor shows an ultrawide pressure sensing range (10 Pa to 1.2 MPa) while maintaining favorable sensitivity (0.01-0.02 kPa-1) and linearity ( R2 ∼ 0.98). Also, the pressure sensor exhibits excellent electromechanical stability and insensitivity to bending-induced deformations. Finally, we demonstrate that the pressure sensor can be applied in a flexible piano pad as an entertainment human interface device and a flexible foot insole as a wearable healthcare and gait monitoring device.


Assuntos
Técnicas Biossensoriais , Elastômeros/química , Nanotubos de Carbono/química , Dispositivos Eletrônicos Vestíveis , Elastômeros/uso terapêutico , Condutividade Elétrica , Humanos , Porosidade , Pressão
11.
Nanoscale ; 9(10): 3399-3407, 2017 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-28054082

RESUMO

We propose that a silver nanowire (AgNW)-embedded conducting film can be monolithically applied onto an arbitrary cloth with strong adhesion and environmental stability. We employ a vapor-phase method, initiated chemical vapor deposition (iCVD), for conformal coating of a scaffold polymer film on the cloth. AgNWs are applied on the surface of iCVD polymer films, and the embedding of AgNWs is completed within only 20 s on heating the polymer-coated cloth to 70 °C. Crosslinking the copolymer at 120 °C renders the AgNW-embedded conducting films on the cloth not only thermally and chemically stable, but also mechanically robust. Moreover, when a hydrophobic encapsulating polymer layer is added on the AgNW-embedded film via iCVD, it substantially improves the stability of the cloth against thermal oxidation under hot and humid conditions, showing applicability of the technology to wearable electronics. With these robust conducting films, we demonstrate the fabrication of a waterproof cloth-based heater and circuit for a seven-segment display, thus, confirming the wide applicability of the technology developed in this study.

12.
ACS Appl Mater Interfaces ; 8(26): 16922-31, 2016 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-27286001

RESUMO

We report a flexible and wearable pressure sensor based on the giant piezocapacitive effect of a three-dimensional (3-D) microporous dielectric elastomer, which is capable of highly sensitive and stable pressure sensing over a large tactile pressure range. Due to the presence of micropores within the elastomeric dielectric layer, our piezocapacitive pressure sensor is highly deformable by even very small amounts of pressure, leading to a dramatic increase in its sensitivity. Moreover, the gradual closure of micropores under compression increases the effective dielectric constant, thereby further enhancing the sensitivity of the sensor. The 3-D microporous dielectric layer with serially stacked springs of elastomer bridges can cover a much wider pressure range than those of previously reported micro-/nanostructured sensing materials. We also investigate the applicability of our sensor to wearable pressure-sensing devices as an electronic pressure-sensing skin in robotic fingers as well as a bandage-type pressure-sensing device for pulse monitoring at the human wrist. Finally, we demonstrate a pressure sensor array pad for the recognition of spatially distributed pressure information on a plane. Our sensor, with its excellent pressure-sensing performance, marks the realization of a true tactile pressure sensor presenting highly sensitive responses to the entire tactile pressure range, from ultralow-force detection to high weights generated by human activity.

13.
ACS Appl Mater Interfaces ; 8(29): 19031-7, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27378213

RESUMO

We propose a fabrication process for extremely robust and easily patternable silver nanowire (AgNW) electrodes on paper. Using an auxiliary donor layer and a simple laminating process, AgNWs can be easily transferred to copy paper as well as various other substrates using a dry process. Intercalating a polymeric binder between the AgNWs and the substrate through a simple printing technique enhances adhesion, not only guaranteeing high foldability of the electrodes, but also facilitating selective patterning of the AgNWs. Using the proposed process, extremely crease-tolerant electronics based on copy paper can be fabricated, such as a printed circuit board for a 7-segment display, portable heater, and capacitive touch sensor, demonstrating the applicability of the AgNWs-based electrodes to paper electronics.

14.
ACS Nano ; 9(12): 12214-23, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26493327

RESUMO

Robust electric conduction under stretching motions is a key element in upcoming wearable electronic devices but is fundamentally very difficult to achieve because percolation pathways in conductive media are subject to collapse upon stretching. Here, we report that this fundamental challenge can be overcome by using a parameter uniquely available in textiles, namely a weaving structure. A textile structure alternately interwoven with inelastic and elastic yarns, achieved via a tricot weave, possesses excellent elasticity (strain up to 200%) in diagonal directions. When this textile is coated with conductive nanomaterials, proper textile engineering allows the textile to obtain an unprecedented 7-fold conductivity increase, with conductivity reaching 33,000 S cm(-1), even at 130% strain, due to enhanced interyarn contacts. The observed stretching conductivity can be described well using a modified 3D percolation theory that reflects the weaving effect and is also utilized for stretchable electronic interconnects and supercapacitors with high performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA