Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366175

RESUMO

With the advancement of sensors, image and video processing have developed for use in the visual sensing area. Among them, video super-resolution (VSR) aims to reconstruct high-resolution sequences from low-resolution sequences. To use consecutive contexts within a low-resolution sequence, VSR learns the spatial and temporal characteristics of multiple frames of the low-resolution sequence. As one of the convolutional neural network-based VSR methods, we propose a deformable convolution-based alignment network (DCAN) to generate scaled high-resolution sequences with quadruple the size of the low-resolution sequences. The proposed method consists of a feature extraction block, two different alignment blocks that use deformable convolution, and an up-sampling block. Experimental results show that the proposed DCAN achieved better performances in both the peak signal-to-noise ratio and structural similarity index measure than the compared methods. The proposed DCAN significantly reduces the network complexities, such as the number of network parameters, the total memory, and the inference speed, compared with the latest method.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Razão Sinal-Ruído
2.
Sensors (Basel) ; 21(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065860

RESUMO

Super resolution (SR) enables to generate a high-resolution (HR) image from one or more low-resolution (LR) images. Since a variety of CNN models have been recently studied in the areas of computer vision, these approaches have been combined with SR in order to provide higher image restoration. In this paper, we propose a lightweight CNN-based SR method, named multi-scale channel dense network (MCDN). In order to design the proposed network, we extracted the training images from the DIVerse 2K (DIV2K) dataset and investigated the trade-off between the SR accuracy and the network complexity. The experimental results show that the proposed method can significantly reduce the network complexity, such as the number of network parameters and total memory capacity, while maintaining slightly better or similar perceptual quality compared to the previous methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA