Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(8): 2198-2201, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058676

RESUMO

Frequency doubling of a Q-switched Yb-doped rod-type 4 × 4 multicore fiber (MCF) laser system is reported. A second harmonic generation (SHG) efficiency of up to 52% was achieved with type I non-critically phase-matched lithium triborate (LBO), with a total SHG pulse energy of up to 17 mJ obtained at 1 kHz repetition rate. The dense parallel arrangement of amplifying cores into a shared pump cladding enables a significant increase in the energy capacity of active fibers. The frequency-doubled MCF architecture is compatible with high-repetition-rate and high-average-power operation and may provide an efficient alternative to bulk solid-state systems as pump sources for high-energy titanium-doped sapphire lasers.

2.
Opt Lett ; 48(18): 4753-4756, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37707894

RESUMO

Advancing ultrafast high-repetition-rate lasers to shortest pulse durations comprising only a few optical cycles while pushing their energy into the multi-millijoule regime opens a route toward terawatt-class peak powers at unprecedented average power. We explore this route via efficient post-compression of high-energy 1.2 ps pulses from an ytterbium InnoSlab laser to 9.6 fs duration using gas-filled multi-pass cells (MPCs) at a repetition rate of 1 kHz. Employing dual-stage compression with a second MPC stage supporting a close-to-octave-spanning bandwidth enabled by dispersion-matched dielectric mirrors, a record compression factor of 125 is reached at 70% overall efficiency, delivering 6.7 mJ pulses with a peak power of ∼0.3 TW. Moreover, we show that post-compression can improve the temporal contrast at multi-picosecond delay by at least one order of magnitude. Our results demonstrate efficient conversion of multi-millijoule picosecond lasers to high-peak-power few-cycle sources, prospectively opening up new parameter regimes for laser plasma physics, high energy physics, biomedicine, and attosecond science.

3.
Opt Express ; 30(3): 3262-3288, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35209589

RESUMO

The investigation of spatio-temporal couplings (STCs) of broadband light beams is becoming a key topic for the optimization as well as applications of ultrashort laser systems. This calls for accurate measurements of STCs. Yet, it is only recently that such complete spatio-temporal or spatio-spectral characterization has become possible, and it has so far mostly been implemented at the output of the laser systems, where experiments take place. In this survey, we present for the first time STC measurements at different stages of a collection of high-power ultrashort laser systems, all based on the chirped-pulse amplification (CPA) technique, but with very different output characteristics. This measurement campaign reveals spatio-temporal effects with various sources, and motivates the expanded use of STC characterization throughout CPA laser chains, as well as in a wider range of types of ultrafast laser systems. In this way knowledge will be gained not only about potential defects, but also about the fundamental dynamics and operating regimes of advanced ultrashort laser systems.

4.
Phys Rev E ; 100(6-1): 063208, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31962408

RESUMO

We report on the deflection of laser pulses and accelerated electrons in a laser-plasma accelerator (LPA) by the effects of laser pulse front tilt and transverse density gradients. Asymmetry in the plasma index of refraction leads to laser steering, which can be due to a density gradient or spatiotemporal coupling of the laser pulse. The transverse forces from the skewed plasma wave can also lead to electron deflection relative to the laser. Quantitative models are proposed for both the laser and electron steering, which are confirmed by particle-in-cell simulations. Experiments with the BELLA Petawatt Laser are presented which show controllable 0.1-1 mrad laser and electron beam deflection from laser pulse front tilt. This has potential applications for electron beam pointing control, which is of paramount importance for LPA applications.

5.
Opt Express ; 14(6): 2512-9, 2006 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19503590

RESUMO

A novel cross-correlator that can be used for temporal characterization of femtosecond laser pulses has been developed. The correlation trace is obtained by "sampling" the structure of the laser pulse with a single, high-contrast pulse produced through femtosecond white-light generation in a line focus. This correlator has, therefore, fewer "ghosts" than a conventional third-order cross-correlator and it can be used with laser pulses that span across a wide wavelength range. Both scanning and single-shot experimental arrangements are described.

6.
Artigo em Inglês | MEDLINE | ID: mdl-25768626

RESUMO

We propose a new method of detecting radiation reaction effects in the motion of particles subjected to laser pulses of moderate intensity and long duration. The effect becomes sizable for particles that gain almost no energy through the interaction with the laser pulse. Hence, there are regions of parameter space in which radiation reaction is actually the dominant influence on charged particle motion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA