Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Hepatol ; 65(2): 325-33, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27117591

RESUMO

BACKGROUND & AIMS: Pediatric liver cancer is a rare but serious disease whose incidence is rising, and for which the therapeutic options are limited. Development of more targeted, less toxic therapies is hindered by the lack of an experimental animal model that captures the heterogeneity and metastatic capability of these tumors. METHODS: Here we established an orthotopic engraftment technique to model a series of patient-derived tumor xenograft (PDTX) from pediatric liver cancers of all major histologic subtypes: hepatoblastoma, hepatocellular cancer and hepatocellular malignant neoplasm. We utilized standard (immuno) staining methods for histological characterization, RNA sequencing for gene expression profiling and genome sequencing for identification of druggable targets. We also adapted stem cell culturing techniques to derive two new pediatric cancer cell lines from the xenografted mice. RESULTS: The patient-derived tumor xenografts recapitulated the histologic, genetic, and biological characteristics-including the metastatic behavior-of the corresponding primary tumors. Furthermore, the gene expression profiles of the two new liver cancer cell lines closely resemble those of the primary tumors. Targeted therapy of PDTX from an aggressive hepatocellular malignant neoplasm with the MEK1 inhibitor trametinib and pan-class I PI3 kinase inhibitor NVP-BKM120 resulted in significant growth inhibition, thus confirming this PDTX model as a valuable tool to study tumor biology and patient-specific therapeutic responses. CONCLUSIONS: The novel metastatic xenograft model and the isogenic xenograft-derived cell lines described in this study provide reliable tools for developing mutation- and patient-specific therapies for pediatric liver cancer. LAY SUMMARY: Pediatric liver cancer is a rare but serious disease and no experimental animal model currently captures the complexity and metastatic capability of these tumors. We have established a novel animal model using human tumor tissue that recapitulates the genetic and biological characteristics of this cancer. We demonstrate that our patient-derived animal model, as well as two new cell lines, are useful tools for experimental therapies.


Assuntos
Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Criança , Modelos Animais de Doenças , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Microbiol Res ; 163(4): 414-23, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-16891103

RESUMO

The complete sequence of a type-1 metacaspase from Acanthamoeba castellanii is reported comprising 478 amino acids. The metacaspase was recovered from an expression library using sera specific for membrane components implicated in stimulating encystation. A central domain of 155 amino acid residues contains the Cys/His catalytic dyad and is the most conserved region containing at least 30 amino acid identities in all metacaspases. The Acanthamoeba castellanii metacaspase has the most proline-rich N-terminus so far reported in type-1 metacaspases with over 40 prolines in the first 150 residues. Ala-Pro-Pro is present 11 times. Phylogenies constructed using only the conserved proteolytic domains or the complete sequences show identical branching patterns, differing only in the rates of change.


Assuntos
Acanthamoeba castellanii/enzimologia , Caspases/genética , Acanthamoeba castellanii/genética , Sequência de Aminoácidos , Animais , Caspases/química , Domínio Catalítico , Sequência Conservada , DNA de Protozoário/química , DNA de Protozoário/genética , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA