Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Mol Life Sci ; 70(19): 3603-16, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23354061

RESUMO

The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth. Subtle changes of proteins involved in the translation process may alter the rate of the protein synthesis and modify the cell fate by shifting the balance from normal status into a tumoral or apoptotic one. The largest eukaryotic initiation factor involved in translation regulation is eIF3. Amongst the 13 factors constituting eIF3, the f subunit finely regulates this balance in a cell-type-specific manner. Loss of this factor causes malignancy in several cells, and atrophy in normal muscle cells. The intracellular interacting partners which influence its physiological significance in both cancer and muscle cells are detailed in this review. By delineating the global interaction network of this factor and by clarifying its intracellular role, it becomes apparent that the f subunit represents a promising candidate molecule to use for biotherapeutic applications.


Assuntos
Fator de Iniciação 3 em Eucariotos/genética , Fator de Iniciação 3 em Eucariotos/metabolismo , Humanos , Células Musculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biossíntese de Proteínas , Subunidades Proteicas
2.
EMBO J ; 27(8): 1266-76, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18354498

RESUMO

In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas Musculares/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Proteínas Ligases SKP Culina F-Box/fisiologia , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Hipertrofia/enzimologia , Hipertrofia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/enzimologia , Atrofia Muscular/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/fisiologia , Mapeamento de Interação de Proteínas , Ubiquitinação
3.
Mol Cell Biol ; 24(4): 1809-21, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14749395

RESUMO

The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G(2)/M transition by controlling the expression of p21(Waf1/Cip1) (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G(2). In growing myoblasts, MyoD reaccumulates during G(2) concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G(2) and delays M-phase entry. This G(2) arrest is not observed in p21(-/-) cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G(2)/M transition.


Assuntos
Proteína Quinase CDC2/metabolismo , Mitose , Mutação/genética , Proteína MyoD/genética , Proteína MyoD/metabolismo , Animais , Linhagem Celular , Ciclina B/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Ciclinas/metabolismo , Fase G2 , Regulação da Expressão Gênica , Histona Desacetilase 1 , Histona Desacetilases , Camundongos , Modelos Biológicos , Músculo Esquelético , Proteína MyoD/química , Mioblastos/citologia , Mioblastos/enzimologia , Mioblastos/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Fatores de Tempo , Ativação Transcricional
4.
Mol Ther Methods Clin Dev ; 2: 14056, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052528

RESUMO

The f subunit of the eukaryotic initiation factor 3 (eIF3f) is downregulated in several cancers and in particular in melanoma and pancreatic cancer cells. Its enforced expression by transient gene transfection negatively regulates cancer cell growth by activating apoptosis. With the aim to increase the intracellular level of eIF3f proteins and activate apoptosis in cancer cell lines, we developed a protein transfer system composed of a cell-penetrating peptide sequence fused to eIF3f protein sequence (MD11-eIF3f). To determine whether exogenously administered eIF3f proteins were able to compensate the loss of endogenous eIF3f and induce cancer cell death, we analyzed the therapeutic action of MD11-eIF3f in several tumor cells. We identified four cell lines respondent to eIF3f-treatment and we evaluated the antitumor properties of the recombinant proteins using dose- and time-dependent studies. Our results demonstrate that this protein delivery approach represents an innovative and powerful strategy for cancer treatment.

5.
Int J Biochem Cell Biol ; 45(10): 2158-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23769948

RESUMO

The eukaryotic initiation factor 3 subunit f (eIF3f) is one of the 13 subunits of the translation initiation factor complex eIF3 required for several steps in the initiation of mRNA translation. In skeletal muscle, recent studies have demonstrated that eIF3f plays a central role in skeletal muscle size maintenance. Accordingly, eIF3f overexpression results in hypertrophy through modulation of protein synthesis via the mTORC1 pathway. Importantly, eIF3f was described as a target of the E3 ubiquitin ligase MAFbx/atrogin-1 for proteasome-mediated breakdown under atrophic conditions. The biological importance of the MAFbx/atrogin-1-dependent targeting of eFI3f is highlighted by the finding that expression of an eIF3f mutant insensitive to MAFbx/atrogin-1 polyubiquitination is associated with enhanced protection against starvation-induced muscle atrophy. A better understanding of the precise role of this subunit should lead to the development of new therapeutic approaches to prevent or limit muscle wasting that prevails in numerous physiological and pathological states such as immobilization, aging, denervated conditions, neuromuscular diseases, AIDS, cancer, diabetes. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Animais , Proliferação de Células , Fator de Iniciação 3 em Eucariotos/genética , Humanos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Biossíntese de Proteínas , Transdução de Sinais
6.
FEBS Lett ; 586(4): 362-7, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22249105

RESUMO

In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy.


Assuntos
Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Ácidos Graxos Insaturados/farmacologia , Humanos , Camundongos , Dados de Sequência Molecular , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mutagênese Sítio-Dirigida , Sinais de Localização Nuclear/química , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Estrutura Terciária de Proteína , Proteínas Ligases SKP Culina F-Box/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos
7.
PLoS One ; 5(2): e8994, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20126553

RESUMO

The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais , Animais , Sítios de Ligação/genética , Western Blotting , Diferenciação Celular , Crescimento Celular , Células Cultivadas , Fator de Iniciação 3 em Eucariotos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/genética , Lisina/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutação , Mioblastos Esqueléticos/citologia , Ligação Proteica , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transfecção
8.
J Biol Chem ; 284(7): 4413-21, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19073596

RESUMO

We recently presented evidence that the subunit eIF3-f of the eukaryotic initiation translation factor eIF3 that interacts with the E3-ligase Atrogin-1/muscle atrophy F-box (MAFbx) for polyubiquitination and proteasome-mediated degradation is a key target that accounts for MAFbx function during muscle atrophy. To understand this process, deletion analysis was used to identify the region of eIF3-f that is required for its proteolysis. Here, we report that the highly conserved C-terminal domain of eIF3-f is implicated for MAFbx-directed polyubiquitination and proteasomal degradation. Site-directed mutagenesis of eIF3-f revealed that the six lysine residues within this domain are required for full polyubiquitination and degradation by the proteasome. In addition, mutation of these six lysines (mutant K(5-10)R) displayed hypertrophic activity in cellulo and in vivo and was able to protect against starvation-induced muscle atrophy. Taken together, our data demonstrate that the C-terminal modifications, believed to be critical for proper eIF3-f regulation, are essential and contribute to a fine-tuning mechanism that plays an important role for eIF3-f function in skeletal muscle.


Assuntos
Fator de Iniciação 3 em Eucariotos/metabolismo , Lisina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Linhagem Celular , Fator de Iniciação 3 em Eucariotos/genética , Lisina/genética , Camundongos , Proteínas Musculares/genética , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína/genética , Proteínas Ligases SKP Culina F-Box/genética , Inanição/genética , Inanição/metabolismo , Inanição/patologia , Ubiquitinação/genética
9.
PLoS One ; 4(3): e4973, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19319192

RESUMO

Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.


Assuntos
Proteínas Musculares/metabolismo , Proteína MyoD/metabolismo , Proteínas Ligases SKP Culina F-Box/metabolismo , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Camundongos , Fibras Musculares Esqueléticas/citologia , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Atrofia Muscular/prevenção & controle , Mutação , Proteínas Ligases SKP Culina F-Box/antagonistas & inibidores , Proteínas Ligases SKP Culina F-Box/genética
10.
Cell Cycle ; 7(12): 1698-701, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18583931

RESUMO

The control of muscle cell size is a physiological process balanced by a fine tuning between protein synthesis and protein degradation. MAFbx/Atrogin-1 is a muscle specific E3 ubiquitin ligase upregulated during disuse, immobilization and fasting or systemic diseases such as diabetes, cancer, AIDS and renal failure. This response is necessary to induce a rapid and functional atrophy. To date, the targets of MAFbx/Atrogin-1 in skeletal muscle remain to be identified. We have recently presented evidence that eIF3-f, a regulatory subunit of the eukaryotic translation factor eIF3 is a key target that accounts for MAFbx/Atrogin-1 function in muscle atrophy. More importantly, we showed that eIF3-f acts as a "translational enhancer" that increases the efficiency of the structural muscle proteins synthesis leading to both in vitro and in vivo muscle hypertrophy. We propose that eIF3-f subunit, a mTOR/S6K1 scaffolding protein in the IGF-1/Akt/mTOR dependent control of protein translation, is a positive actor essential to the translation of specific mRNAs probably implicated in muscle hypertrophy. The central role of eIF3-f in both the atrophic and hypertrophic pathways will be discussed in the light of its promising potential in muscle wasting therapy.


Assuntos
Fator de Iniciação 3 em Eucariotos/química , Fator de Iniciação 3 em Eucariotos/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/metabolismo , Biossíntese de Proteínas , Animais , Fator de Iniciação 3 em Eucariotos/antagonistas & inibidores , Humanos , Hipertrofia , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Atrofia Muscular/etiologia , Atrofia Muscular/genética , Proteínas Quinases/metabolismo , Subunidades Proteicas/fisiologia , Proteínas Quinases S6 Ribossômicas/metabolismo , Proteínas Ligases SKP Culina F-Box/química , Proteínas Ligases SKP Culina F-Box/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR , Síndrome de Emaciação/terapia
11.
Exp Cell Res ; 312(20): 3999-4010, 2006 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-17014844

RESUMO

The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.


Assuntos
Divisão Celular , Fase G2 , Mitose , Células Musculares/metabolismo , Proteína MyoD/metabolismo , Animais , Proteína Quinase CDC2/metabolismo , Linhagem Celular , Cromossomos/genética , Cromossomos/metabolismo , Ciclina B/metabolismo , Camundongos , Proteína MyoD/fisiologia , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina/química , Transfecção , Ubiquitina/metabolismo
12.
J Biol Chem ; 280(4): 2847-56, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15531760

RESUMO

MyoD controls myoblast identity and differentiation and is required for myogenic stem cell function in adult skeletal muscle. MyoD is degraded by the ubiquitin-proteasome pathway mediated by different E3 ubiquitin ligases not identified as yet. Here we report that MyoD interacts with Atrogin-1/MAFbx (MAFbx), a striated muscle-specific E3 ubiquitin ligase dramatically up-regulated in atrophying muscle. A core LXXLL motif sequence in MyoD is necessary for binding to MAFbx. MAFbx associates with MyoD through an inverted LXXLL motif located in a series of helical leucine-charged residue-rich domains. Mutation in the LXXLL core motif represses ubiquitination and degradation of MyoD induced by MAFbx. Overexpression of MAFbx suppresses MyoD-induced differentiation and inhibits myotube formation. Finally the purified recombinant SCF(MAFbx) complex (SCF, Skp1, Cdc53/Cullin 1, F-box protein) mediated MyoD ubiquitination in vitro in a lysine-dependent pathway. Mutation of the lysine 133 in MyoD prevented its ubiquitination by the recombinant SCF(MAFbx) complex. These observations thus demonstrated that MAFbx functions in ubiquitinating MyoD via a sequence found in transcriptional coactivators. These transcriptional coactivators mediate the binding to liganded nuclear receptors. We also identified a novel protein-protein interaction module not yet identified in F-box proteins. MAFbx may play an important role in the course of muscle differentiation by determining the abundance of MyoD.


Assuntos
Proteína MyoD/química , Proteínas Ligases SKP Culina F-Box/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , DNA/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Lisina/química , Camundongos , Microscopia de Fluorescência , Modelos Genéticos , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Ligases SKP Culina F-Box/metabolismo , Homologia de Sequência de Aminoácidos , Fator de Células-Tronco/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo
13.
EMBO J ; 21(15): 4070-80, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12145207

RESUMO

Syncytia arising from the fusion of cells expressing the HIV-1-encoded Env gene with cells expressing the CD4/CXCR4 complex undergo apoptosis following the nuclear translocation of mammalian target of rapamycin (mTOR), mTOR-mediated phosphorylation of p53 on Ser15 (p53(S15)), p53-dependent upregulation of Bax and activation of the mitochondrial death pathway. p53(S15) phosphorylation is only detected in syncytia in which nuclear fusion (karyogamy) has occurred. Karyogamy is secondary to a transient upregulation of cyclin B and a mitotic prophase-like dismantling of the nuclear envelope. Inhibition of cyclin-dependent kinase-1 (Cdk1) prevents karyogamy, mTOR activation, p53(S15) phosphorylation and apoptosis. Neutralization of p53 fails to prevent karyogamy, yet suppresses apoptosis. Peripheral blood mononuclear cells from HIV-1-infected patients exhibit an increase in cyclin B and mTOR expression, correlating with p53(S15) phosphorylation and viral load. Cdk1 inhibition prevents the death of syncytia elicited by HIV-1 infection of primary CD4 lymphoblasts. Thus, HIV-1 elicits a pro-apoptotic signal transduction pathway relying on the sequential action of cyclin B-Cdk1, mTOR and p53.


Assuntos
Apoptose/fisiologia , Antígenos CD4/fisiologia , Proteína Quinase CDC2/fisiologia , Núcleo Celular/fisiologia , Produtos do Gene env/fisiologia , HIV-1/fisiologia , Proteínas Quinases/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2 , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Adulto , Terapia Antirretroviral de Alta Atividade , Antígenos CD4/genética , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Proteína Quinase CDC2/antagonistas & inibidores , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Núcleo Celular/ultraestrutura , Perfilação da Expressão Gênica , Células Gigantes/citologia , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Células HeLa/citologia , Humanos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/virologia , Substâncias Macromoleculares , Fusão de Membrana , Mitocôndrias/fisiologia , Proteínas de Neoplasias/fisiologia , Membrana Nuclear/fisiologia , Membrana Nuclear/ultraestrutura , Fosforilação , Fosfosserina/química , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/antagonistas & inibidores , Carga Viral , Proteína X Associada a bcl-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA