Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 142(17): 1478-1493, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37339584

RESUMO

Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin lymphoma having a poor overall survival that is in need for the development of new therapeutics. In this study, we report the identification and expression of a new isoform splice variant of the tyrosine kinase receptor AXL in MCL cells. This new AXL isoform, called AXL3, lacks the ligand-binding domain of the commonly described AXL splice variants and is constitutively activated in MCL cells. Interestingly, functional characterization of AXL3, using CRISPR inhibition, revealed that only the knock down of this isoform leads to apoptosis of MCL cells. Importantly, pharmacological inhibition of AXL activity resulted in a significant decrease in the activation of well-known proproliferative and survival pathways activated in MCL cells (ie, ß-catenin, Ak strain transforming, and NF-κB). Therapeutically, preclinical studies using a xenograft mouse model of MCL indicated that bemcentinib is more effective than ibrutinib in reducing the tumor burden and to increase the overall survival. Our study highlights the importance of a previously unidentified AXL splice variant in cancer and the potential of bemcentinib as a targeted therapy for MCL.


Assuntos
Linfoma de Célula do Manto , Proteínas Tirosina Quinases , Humanos , Adulto , Animais , Camundongos , Tirosina Quinase da Agamaglobulinemia , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Apoptose
2.
J Cell Physiol ; 234(9): 16295-16303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30770553

RESUMO

Nucleoside analogs represent the backbone of several distinct chemotherapy regimens for acute myeloid leukemia (AML) and combination with tyrosine kinase inhibitors has improved survival of AML patients, including those harboring the poor-risk FLT3-ITD mutation. Although these compounds are effective in killing proliferating blasts, they lack activity against quiescent leukemia stem cells (LSCs), which contributes to initial treatment refractoriness or subsequent disease relapse. The reagent 8-chloro-adenosine (8-Cl-Ado) is a ribose-containing, RNA-directed nucleoside analog that is incorporated into newly transcribed RNA rather than in DNA, causing inhibition of RNA transcription. In this report, we demonstrate antileukemic activities of 8-Cl-Ado in vitro and in vivo and provide mechanistic insight into the mode of action of 8-Cl-Ado in AML. 8-Cl-Ado markedly induced apoptosis in LSC, with negligible effects on normal stem cells. 8-Cl-Ado was particularly effective against AML cell lines and primary AML blast cells harboring the FLT3-ITD mutation. FLT3-ITD is associated with high expression of miR-155. Furthermore, we demonstrate that 8-Cl-Ado inhibits miR-155 expression levels accompanied by induction of DNA-damage and suppression of cell proliferation, through regulation of miR-155/ErbB3 binding protein 1(Ebp1)/p53/PCNA signaling. Finally, we determined that combined treatment of NSG mice engrafted with FLT3-ITD + MV4-11 AML cells with 8-Cl-Ado and the FLT3 inhibitor AC220 (quizartinib) synergistically enhanced survival, compared with that of mice treated with the individual drugs, suggesting a potentially effective approach for FLT3-ITD AML patients.

3.
J Clin Med ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685612

RESUMO

Vacuolar ATPase (V-ATPase) is regarded as a possible target in cancer treatment. It is expressed in primary acute myeloid leukemia cells (AML), but the expression varies between patients and is highest for patients with a favorable prognosis after intensive chemotherapy. We therefore investigated the functional effects of two V-ATPase inhibitors (bafilomycin A1, concanamycin A) for primary AML cells derived from 80 consecutive patients. The V-ATPase inhibitors showed dose-dependent antiproliferative and proapoptotic effects that varied considerably between patients. A proteomic comparison of primary AML cells showing weak versus strong antiproliferative effects of V-ATPase inhibition showed a differential expression of proteins involved in intracellular transport/cytoskeleton functions, and an equivalent phosphoproteomic comparison showed a differential expression of proteins that regulate RNA processing/function together with increased activity of casein kinase 2. Patients with secondary AML, i.e., a heterogeneous subset with generally adverse prognosis and previous cytotoxic therapy, myeloproliferative neoplasia or myelodysplastic syndrome, were characterized by a strong antiproliferative effect of V-ATPase inhibition and also by a specific mRNA expression profile of V-ATPase interactome proteins. Furthermore, the V-ATPase inhibition altered the constitutive extracellular release of several soluble mediators (e.g., chemokines, interleukins, proteases, protease inhibitors), and increased mediator levels in the presence of AML-supporting bone marrow mesenchymal stem cells was then observed, especially for patients with secondary AML. Finally, animal studies suggested that the V-ATPase inhibitor bafilomycin had limited toxicity, even when combined with cytarabine. To conclude, V-ATPase inhibition has antileukemic effects in AML, but this effect varies between patients.

4.
Int J Pharm ; 612: 121296, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34793932

RESUMO

Treatment of acute myeloid leukaemia (AML) relies on decades-old drugs, and while recent years have seen some breakthroughs, AML is still characterised by poor prognosis and survival rate. Drug repurposing can expedite the preclinical development of new therapies, and by nanocarrier encapsulation, the number of potentially viable drug candidates can be further expanded. The anti-psychotic drug chlorpromazine (CPZ) has been identified as a candidate for repurposing for AML therapy. Nanoencapsulation may improve the suitability of CPZ for the treatment of AML by reducing its effect on the central nervous system. Using the emulsion-evaporation technique, we have developed PEGylated PLGA nanoparticles loaded with CPZ for AML therapy. The nanoparticles were characterised to be between 150 and 300 nm by DLS, of spherical morphology by TEM, with a drug loading of at least 6.0% (w/w). After an initial burst release of adsorbed drug, the remaining 80% of the drug was retained in the PLGA nanoparticles for at least 24 h. The CPZ-loaded nanoparticles had equal cytotoxic potential towards AML cells to free CPZ, but acted more slowly, in line with the protracted drug release. Crucially, nanoparticles injected intravenously into zebrafish larvae did not accumulate in the brain, and nanoencapsulation also prevented CPZ from crossing an artificial membrane model. This demonstrates that the purpose for nanoencapsulation of CPZ is fulfilled, namely avoiding effects on the central nervous system while retaining the anti-AML activity of the drug.


Assuntos
Clorpromazina , Nanopartículas , Animais , Liberação Controlada de Fármacos , Reposicionamento de Medicamentos , Peixe-Zebra
5.
Cancer Biol Ther ; 22(3): 204-215, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33691611

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the modern world, in part due to poor delivery of chemotherapeutics. Sonoporation can be used to enhance the efficacy of standard of care therapies for PDAC. Using xenograft models of PDAC we investigate sonoporation using four ifferent ultrasound contrast agents (UCAs) and two ultrasound regimens to identify the ideal parameters to increase therapeutic efficacy. MIA-PaCa2 xenografts in over 175 immunodeficient mice were treated with gemcitabine and paclitaxel and subjected to low or high power ultrasound (60 and 200 mW/cm2 respectively) in conjunction with one of four different UCAs. The UCAs investigated were Definity®, SonoVue®, Optison™ or Sonazoid™. Tumor volumes, vascularity, hemoglobin, and oxygenation were measured and compared to controls. High power treatment in conjunction with Sonazoid sonoporation led to significantly smaller tumors when started early (tumors ~50mm3; p = .0105), while no UCAs significantly increased efficacy in the low power cohort. This trend was also found in larger tumors (~250mm3) where all four UCA agents significantly increased therapeutic efficacy in the high power group (p < .01), while only Definity and SonoVue increased efficacy in the low power cohort (p < .03). Overall, the higher power ultrasound treatment modality was more consistently effective at decreasing tumor volume and increasing vascularity characteristics. In conclusion, Sonazoid was the most consistently effective UCA at decreasing tumor volume and increasing vascularity. Thus, we are pursuing a larger phase II clinical trial to validate the increased efficacy of sonoporation in conjunction with chemotherapy in PDAC patients.


Assuntos
Carcinoma Ductal Pancreático/genética , Microbolhas/normas , Sonicação/métodos , Adenocarcinoma , Animais , Carcinoma Ductal Pancreático/mortalidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Análise de Sobrevida
6.
Oncotarget ; 7(7): 8105-18, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26812881

RESUMO

Palliative care in acute myeloid leukaemia (AML) is inadequate. For elderly patients, unfit for intensive chemotherapy, median survival is 2-3 months. As such, there is urgent demand for low-toxic palliative alternatives. We have repositioned two commonly administered anti-leukaemia drugs, valproic acid (VPA) and hydroxyurea (HU), as a combination therapy in AML. The anti-leukemic effect of VPA and HU was assessed in multiple AML cell lines confirming the superior anti-leukemic effect of combination therapy. Mechanistic studies revealed that VPA amplified the ability of HU to slow S-phase progression and this correlated with significantly increased DNA damage. VPA was also shown to reduce expression of the DNA repair protein, Rad51. Interestingly, the tumour suppressor protein p53 was revealed to mitigate cell cycle recovery following combination induced arrest. The efficacy of combination therapy was validated in vivo. Combination treatment increased survival in OCI-AML3 and patient-derived xenograft mouse models of AML. Therapy response was confirmed by optical imaging with multiplexed near-infrared labelled antibodies. The combination of HU and VPA indicates significant potential in preclinical models of AML. Both compounds are widely available and well tolerated. We believe that repositioning this combination could significantly enhance the palliative care of patients unsuited to intensive chemotherapy.


Assuntos
Sinergismo Farmacológico , Hidroxiureia/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Ácido Valproico/farmacologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticonvulsivantes/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Estudos de Casos e Controles , Proliferação de Células/efeitos dos fármacos , Feminino , Imunofluorescência , Seguimentos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Mutação/genética , Estadiamento de Neoplasias , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
ChemMedChem ; 10(9): 1522-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26250720

RESUMO

Computational chemistry has shown that backbone-alkylated imidazoles ought to be efficient ligands for transition metal catalysts with improved carbene-to-metal donation. In this work, such alkylated imidazoles were synthesized and complexed with silver(I) by means of an eight/nine-step synthetic pathway we devised to access a new class of biologically active silver complexes. The synthesis involves selective iodination of the imidazole backbone, followed by Sonogashira coupling to replace the backbone iodine. The installed alkyne moiety is then subjected to reductive hydrogenation with Pearlman's catalyst. The imidazole N1 atom is arylated by the palladium-catalyzed Buchwald N-arylation method. The imidazole N3 position was then methylated with methyl iodine, whereupon the synthesis was terminated by complexation of the imidazolium salt with silver(I) oxide. The synthetic pathway provided an overall yield of ≈20 %. The resulting complexes were tested in vitro against HL60 and MOLM-13 leukemic cells, two human-derived cell lines that model acute myeloid leukemia. The most active compounds exhibiting low IC50 values of 14 and 27 µM, against HL60 and MOLM-13 cells, respectively. The imidazole side chain was found to be essential for high cytotoxicity, as the imidazole complex bearing a C7 side chain at the 4-position was four- to sixfold more potent than the corresponding imidazole elaborated with a methyl group.


Assuntos
Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Leucemia/tratamento farmacológico , Prata/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Células HL-60/efeitos dos fármacos , Compostos Heterocíclicos/síntese química , Humanos , Imidazóis/química , Concentração Inibidora 50 , Leucemia/patologia , Metano/análogos & derivados , Metano/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA