Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1850): 20210217, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35306887

RESUMO

The number of dioecious species for which the genetic basis of sex determination has been resolved is rapidly increasing. Nevertheless, the molecular mechanisms downstream of the sex determinants remain largely elusive. Here, by RNA-sequencing early-flowering isogenic aspen (Populus tremula) lines differing exclusively for the sex switch gene ARR17, we show that a narrowly defined genetic network controls differential development of female and male flowers. Although ARR17 encodes a type-A response regulator supposedly involved in cytokinin (CK) hormone signalling, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-mediated arr17 knockout only affected the expression of a strikingly small number of genes, indicating a specific role in the regulation of floral development rather than a generic function in hormone signalling. Notably, the UNUSUAL FLORAL ORGANS (UFO) gene, encoding an F-box protein acting as a transcriptional cofactor with LEAFY (LFY) to activate B-class MADS-box gene expression, and the B-class gene PISTILLATA (PI), necessary for male floral organ development, were strongly de-repressed in the arr17 CRISPR mutants. Our data highlight a CK-independent role of the poplar response regulator ARR17 and further emphasize the minimal differences between female and male individuals. This article is part of the theme issue 'Sex determination and sex chromosome evolution in land plants'.


Assuntos
Populus , Flores/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Hormônios/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Populus/genética
2.
Nat Plants ; 6(6): 630-637, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483326

RESUMO

Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive1. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR-Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.


Assuntos
Genes de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Plantas/genética , Populus/genética , Cromossomos de Plantas , Processos de Determinação Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA