Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(43): 15338-43, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25288736

RESUMO

Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.


Assuntos
Técnicas de Química Sintética , Poeira Cósmica/análise , Meteoroides , Sistema Solar , Microscopia Eletrônica de Transmissão , Análise Espectral
2.
Nat Commun ; 15(1): 778, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278803

RESUMO

Organic matter in extraterrestrial samples is a complex material that might have played an important role in the delivery of prebiotic molecules to the early Earth. We report here on the identification of nitrogen-containing compounds such as amino acids and N-heterocycles within the recent observed meteorite fall Winchcombe by high-spatial resolution spectroscopy techniques. Although nitrogen contents of Winchcombe organic matter are low (N/C ~ 1-3%), we were able to detect the presence of these compounds using a low-noise direct electron detector. These biologically relevant molecules have therefore been tentatively found within a fresh, minimally processed meteorite sample by high spatial resolution techniques conserving the overall petrographic context. Carbon functional chemistry investigations show that sizes of aromatic domains are small and that abundances of carboxylic functional groups are low. Our observations demonstrate that Winchcombe represents an important addition to the collection of carbonaceous chondrites and still preserves pristine extraterrestrial organic matter.

3.
Sci Rep ; 10(1): 20251, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219224

RESUMO

We report on the detection of primordial organic matter within the carbonaceous chondrite Maribo that is distinct from the majority of organics found in extraterrestrial samples. We have applied high-spatial resolution techniques to obtain C-N isotopic compositions, chemical, and structural information of this material. The organic matter is depleted in 15N relative to the terrestrial value at around δ15N ~ -200‰, close to compositions in the local interstellar medium. Morphological investigations by electron microscopy revealed that the material consists of µm- to sub-µm-sized diffuse particles dispersed within the meteorite matrix. Electron energy loss and synchrotron X-ray absorption near-edge structure spectroscopies show that the carbon functional chemistry is dominated by aromatic and C=O bonding environments similar to primordial organics from other carbonaceous chondrites. The nitrogen functional chemistry is characterized by C-N double and triple bonding environments distinct from what is usually found in 15N-enriched organics from aqueously altered carbonaceous chondrites. Our investigations demonstrate that Maribo represents one of the least altered CM chondrite breccias found to date and contains primordial organic matter, probably originating in the interstellar medium.

4.
Science ; 345(6198): 786-91, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124433

RESUMO

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

5.
Science ; 314(5806): 1716-9, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170290

RESUMO

Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.

6.
Science ; 314(5806): 1720-4, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170291

RESUMO

Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.


Assuntos
Meteoroides , Compostos Orgânicos/análise , Carbono/análise , Poeira Cósmica/análise , Deutério/análise , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Oxigênio/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Astronave
7.
Science ; 314(5806): 1731-5, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17170294

RESUMO

We measured the elemental compositions of material from 23 particles in aerogel and from residue in seven craters in aluminum foil that was collected during passage of the Stardust spacecraft through the coma of comet 81P/Wild 2. These particles are chemically heterogeneous at the largest size scale analyzed ( approximately 180 ng). The mean elemental composition of this Wild 2 material is consistent with the CI meteorite composition, which is thought to represent the bulk composition of the solar system, for the elements Mg, Si, Mn, Fe, and Ni to 35%, and for Ca and Ti to 60%. The elements Cu, Zn, and Ga appear enriched in this Wild 2 material, which suggests that the CI meteorites may not represent the solar system composition for these moderately volatile minor elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA